求最大子矩阵

本文介绍了一种算法,帮助地主老王计算其田地中所有矩形区域的最大收益。通过二维前缀和和动态规划,提供了两种高效解决方案:O(n^2m^2)和O(n^2m),以解决N×M矩形田地收益问题,适用于数据范围1<=N,M<=100的复杂场景。
摘要由CSDN通过智能技术生成

题目:隔壁家的地主老王最近在忙着核算自家的收益。老王家有一块由N×M
个相同大小的小正方形组成的矩形田地,每块小正方形田地分给不同的佃户种植,有着不同的收益wij. 到年底了,老王想要统计一下自家田地中所有矩形田地(矩形田地是指由若干小正方形组成的任意大小的矩形田地,一个小正方形也算矩形田地)获得的收益中最大收益是多少,你能帮帮他吗?
数据范围:1<=N,M<=100,-200000<=wij<=200000。

1.O(n2m2算法)
二维前缀和维护并枚举矩阵的左上与右下点进行计算。

2.O(n2m)算法
只求每一个数和与它同一列且行数比它小的数的和sum[i][k],在进行最小值求算时只需枚举矩阵的上下行i,j,对这两行中的每一列k进行分析,若sum[j][k]-sum[i-1][k]加到现在累加的和之后小于0,则舍弃这一列及其之前的所有列,从下一列重新计算。每一次累加得到的和都要与最终答案进行比较取最大值。

#include<cstdio>
using namespace std;
int n,m,sum[110][110],ans=-200000;
inline void input(){
	scanf("%d%d",&n,&m);
	for(register int i=1;i<=n;i++){
		for(register int j=1;j<=m;j++){
			scanf("%d",&sum[i][j]);
			sum[i][j]+=sum[i-1][j];
		}
	}
}
inline void solve(){
	int cnt=0;
	for(register int i=1;i<=n;i++){
		for(register int j=i;j<=n;j++){
			cnt=0;
			for(register int k=1;k<=m;k++){
				cnt+=sum[j][k]-sum[i-1][k];
				if(cnt>ans)	ans=cnt;
				if(cnt<0) cnt=0;
			}
		}
	} 
}
int main(){
	input();
	solve();
	printf("%d\n",ans);
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值