matlab最小二乘法_基于最小二乘法的线性回归拟合

本文介绍了最小二乘法的基本原理,并使用MATLAB实现了一个线性回归的示例。通过Python生成数据并添加噪声,利用最小二乘法求解线性回归的系数,最后通过R方值评估拟合效果。
摘要由CSDN通过智能技术生成

阅读本文需要的知识储备:

  • 高等数学

  • 概率论与数理统计

  • Python基础

线性回归,其实生活中有很多这样的例子,比如:票价与行车距离、服务质量之间的关系,买房时房价与面积、地域等的关系。给我们一组这样的数据,我们想找出一个数学关系来描述这个问题,从而得到自己想要的结论。那么,怎么样才能使得你确定出的关系是一个好的线性关系呢。最著名的当数最小二乘法了,很多人都知道。

最小二乘法原理

众所周知,最小二乘法原理就是利用,拟合直线上面的因变量值与实际值的残差平方和最小作为优化目标。从而确定出我们需要找出的的系数。给定一组数据X = (X1,X2,...,Xn),Y = (Y1,Y2,...,Yn),一般方法通过画散点图观察我们发现,X、Y之间有可能存在很强的线性关系,当然也可能有其它关系(更高次也是有可能的)。我们的任务就是,通过线性拟合找到合适的线性系数,能最好反应X、Y之间的相关关系。

假设线性方程为:

4a60f0424b003fe9e026969994911af1.png

这里的eps就是指的实际值与直线拟合值的残差,它们肯定会有差值的,一般而言。

目标函数就是因变量值与实际值的残差平方和

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值