普通最小二乘模型(Ordinary Least Squares---OLS Mod

普通最小二乘模型(Ordinary Least Squares—OLS Module)

一、“最小二乘法”的核心: 保证所有数据偏差的平方和最小。
二、建模过程
设,数据集X(xi,yi),假设数据集上的点可以近似拟合为一条线(拟合直线 y=ax+b),从而利用该拟合直线对数据进行预测y值。系数a,b可根据最小二乘核心思想(保证所有数据偏差的平方和最小)求得。
1.设拟合直线方程 y=ax+b
2.误差 di=yi-(a*xi+b) 其中,(xi,yi)为任意观察点
3.数据集上的总误差 D=∑di (i=1…n)
当D取最小值时直线拟合度最高。
用D分别对a,b求偏导数等于0,可求得a,b的值,从而得到线性模型y=ax+b。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值