pse文本行检测_更好地理解图片:场景文字检测工具 cnstd

cnstd是一个Python3场景文字检测工具,包含PSENet模型,支持多种backbone,可用于图片中文字检测。通过结合OCR工具cnocr,可以识别检测框内的文字。提供命令行工具进行图片预测和模型训练。项目源代码可在GitHub找到。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

通过识别图片中的文字,我们可以更好地理解图片的内容。cnstd 是 Python 3 下的场景文字检测(Scene Text Detection,简称STD)工具包,自带了多个训练好的检测模型,安装后即可直接使用。当前的文字检测模型使用的是 PSENet,目前支持两种 backbone 模型: mobilenetv3  和  resnet50_v1b。它们都是在 ICPR 和 ICDAR15 的 11000 张训练集图片上训练得到的。

如需要识别文本框中的文字,可以结合 OCR 工具包 cnocr 一起使用。

项目地址:https://github.com/breezedeus/cnstd ,欢迎大家尝试。

示例

5ad19eda79070bd336afb897b8f901cb.png

安装

嗯,安装真的很简单。

pip install cnstd

【注意】:

  • 请使用Python3 (3.4, 3.5, 3.6以及之后版本应该都行),没测过Python2下是否ok。

  • 依赖opencv,所以可能需要额外安装opencv。

已有模型

当前的文字检测模型使用的是PSENet,目前包含两个已训练好的模型,分别对应两种backbone模型:mobilenetv3 和 resnet50_v1b。它们都是在ICPR和ICDAR15训练数据上训练得到的。

5cabcc02cb2eea35fc4dbb4cdecc564f.png

模型 resnet50_v1b 精度略高于模型 mobilenetv3

使用方法

首次使用 cnstd 时,系统会自动下载zip格式的模型压缩文件,并存放于 ~/.cnstd目录(Windows下默认路径为 C:\Users\\AppData\Roaming\cnstd)。下载后的zip文件代码会自动对其解压,然后把解压后的模型相关目录放于~/.cnstd/0.1.0目录中。

如果系统无法自动成功下载zip文件,则需要手动从 百度云盘(提取码为 4ndj)下载对应的zip文件并把它存放于 ~/.cnstd/0.1.0(Windows下为 C:\Users\\AppData\Roam

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值