hp prime 函数图像_机器视觉 4.1 图像退化与噪声

I 图像退化和复原的过程

图像退化是因为对真实数据f(x,y)在拍摄过程中由于电流等因素的影响而质量变差。

4e58cee3eb3473c826d2542421e78431.png

h(x,y)是退化函数,θ(x,y)是噪声。

而图像复原的过程,首先就是要分析噪声的类型,然后根据噪声的类型对原始图像进行逆噪声处理。

II 噪声的类型分析

噪声的类型主要是根据噪声污染后的图像的直方图来观察,看符合哪种噪声的分布图,获得主观估计,再根据样本来估算这一分布的参数。

那么首先我们来看常见的噪声类型和他的分布图。

(1)高斯噪声

高斯噪声的概率密度函数:

是噪声均值,σ是方差。

高斯噪声的分布形状为:

bcef6d171e8a5b1fd3d3ac43f72fe0f9.png
流线对称的战斗机头

(2)瑞利噪声

瑞利噪声模型用于拟合向右歪斜的分布图。

概率密度函数为:

均值:

方差:

fda4d0efa0b201ac99e919be9f81b541.png
高斯是个战斗机,瑞利就是高斯战斗机侧翻了一个角度

(3)伽马噪声

伽马噪声的分布形状与瑞利噪声非常像,但是左边更直立,右边更平缓。就像一个高跟鞋。

78312d3fed512e11e783f370f4b12e66.png
刘敏涛的高跟鞋

它的概率密度函数

其中均值

,方差

(4)指数噪声

046a4e8d6c3a6bbada784482519b6d8a.png

PDF为

均值

方差

(5)均匀噪声

969d649233caf9ce4a16dd2e90f1d2cf.png

PDF为

均值

,方差

(6)椒盐噪声

椒盐噪声就像在图像中撒上了胡椒面和盐粒一样,胡椒面是深色的,盐粒是白色的。

它的概率密度函数为

其中a表示胡椒噪声(图像中的暗点),b表示盐噪声(图像亮点)。且灰度值a<b。它的噪声图像表现为双极脉冲。

0e68ef0b7fe47be66ef5a19514f7ef4d.png

这些噪声在实际图像中是什么样子的呢?对一个纯净的图像分别加上以上各种类型的噪声后。

ff37cf76ba9e2d59855f9f3316b4082d.png
纯净的图像,灰度直方图只有三个尖峰

08ebc83fffbfe69d4c5e45dd8a75e3de.png
左:加高斯噪声;中:加瑞利噪声;右:加伽马噪声

f98819f1c545fac9b5407df396e13876.png
左:指数;中:均值;右:椒盐(盐是最右侧的短柱,椒是中间的小短柱)

可以看出,加入这些噪音后,在每个尖峰处的灰度分布和三种噪声的曲线非常一致。

(7)周期噪声

周期噪声主要是由于图像获取时的电流或机电干扰形成的,是一种空间相关的噪声。这种非常规律的噪声可以再频域中清晰的反映出来。如下图,频谱中显示了一对共轭点就是这个周期噪声。

bfaddc43e78893b46ee889f7922656ac.png
左图被正弦波污染,右图是它的频谱。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值