I 图像退化和复原的过程
图像退化是因为对真实数据f(x,y)在拍摄过程中由于电流等因素的影响而质量变差。
h(x,y)是退化函数,θ(x,y)是噪声。
而图像复原的过程,首先就是要分析噪声的类型,然后根据噪声的类型对原始图像进行逆噪声处理。
II 噪声的类型分析
噪声的类型主要是根据噪声污染后的图像的直方图来观察,看符合哪种噪声的分布图,获得主观估计,再根据样本来估算这一分布的参数。
那么首先我们来看常见的噪声类型和他的分布图。
(1)高斯噪声
高斯噪声的概率密度函数:
是噪声均值,σ是方差。
高斯噪声的分布形状为:
(2)瑞利噪声
瑞利噪声模型用于拟合向右歪斜的分布图。
概率密度函数为:
均值:
方差:
(3)伽马噪声
伽马噪声的分布形状与瑞利噪声非常像,但是左边更直立,右边更平缓。就像一个高跟鞋。
它的概率密度函数
其中均值
,方差
(4)指数噪声
PDF为
均值
方差
(5)均匀噪声
PDF为
均值
,方差
(6)椒盐噪声
椒盐噪声就像在图像中撒上了胡椒面和盐粒一样,胡椒面是深色的,盐粒是白色的。
它的概率密度函数为
其中a表示胡椒噪声(图像中的暗点),b表示盐噪声(图像亮点)。且灰度值a<b。它的噪声图像表现为双极脉冲。
这些噪声在实际图像中是什么样子的呢?对一个纯净的图像分别加上以上各种类型的噪声后。
可以看出,加入这些噪音后,在每个尖峰处的灰度分布和三种噪声的曲线非常一致。
(7)周期噪声
周期噪声主要是由于图像获取时的电流或机电干扰形成的,是一种空间相关的噪声。这种非常规律的噪声可以再频域中清晰的反映出来。如下图,频谱中显示了一对共轭点就是这个周期噪声。