频域卷积 matLAB,[转载]使用FFT实现现行卷积,MATLAB计算自相关函数和互相关函数...

本文介绍了如何使用MATLAB实现线性卷积,自相关函数和互相关函数。通过傅里叶变换定理,利用DFT进行频域卷积,并讨论了补零策略。同时,通过xcorr函数与自定义FFT实现自相关和互相关函数的计算,探讨了补零长度对结果的影响。此外,还简述了小m序列和Gold序列的生成方法。
摘要由CSDN通过智能技术生成

最近在做关于使用Matlab编程实现小m序列和Gold序列的实验,下面就说说关于这次实验室的一些收获:

1. 关于使用DFT实现线性卷积。

2. 关于自相关函数和互相关函数的Matlab计算。

3. 关于小m序列和Gold序列的一些基本概念

一、学工的如果不知道如何使用DFT来求线性卷积和这种思想的重要性,他就白学了(小波老师原话)

要求:t[n]=f(n)*g(n),把g(n)翻转,向右移动n格与f(n)的乘积和。

假设f(n)长度为L,g(n)长度为P,则卷积后的有效点数为L+P-1,其余为全零。

由傅里叶变换定理:时域卷积等效于频域乘积,即

T(e^jw)=F(e^jw)G(e^jw)。用w=(2*pi/N)k,代替可得:T~[k]=F~[k]G~[k],取k=0-N-1则可得到T[k]=F[k]G[k]。

一个“周期序列”的DFS相当于对“一个周期”的序列傅里叶变换做频域抽样w=(2*pi/N)k,且抽样后满足x~[n]=∑x[n-rN]。N为周期。

由于DFS无论时域还是频域都可以用N个点表示所有信息,所以定义DFT,只取时域N个点并对应频域N个点,借助DFS便可相互恢复。方法为取x~[n]从0到N-1即可。

计算F[k]G[k],首先要保证N>=L+P-1,则将f(n)、g(n)补全至长度N,补零。

二、自相关函数:定义f(t)*f(-t) ∫f(t)f(t-α)

互相关函数:定义f(t)*g(-t) ∫f(t)g(t-α)

MATLAB实现:例如A=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值