汉诺双塔问题python_题解 - Hanoi 双塔问题

本文介绍了汉诺双塔问题的Python解题思路和完整代码。通过公式计算最少移动次数,利用动态规划求解,并提供了简化代码实现。
摘要由CSDN通过智能技术生成

题面简述

给定 \(A\)、\(B\)、\(C\) 三根足够长的细柱,在 \(A\) 柱上放有 \(2n\) 个中间有孔的圆盘,共有 \(n\) 个不同的尺寸,每个尺寸都有两个相同的圆盘,注意这两个圆盘是不加区分的。现要将这些圆盘移到 \(C\) 柱上,在移动过程中可放在 \(B\) 柱上暂存。要求:

每次只能移动一个圆盘;

\(A\)、\(B\)、\(C\) 三根细柱上的圆盘都要保持上小下大的顺序;

任务:设 \(A_n\) 为 \(2n\) 个圆盘完成上述任务所需的最少移动次数,对于输入的 \(n\),输出 \(A_n\) 。

思路

这个是双塔,其实和单塔是一样的(两个圆盘不加区分,可以叠加,你懂得)

使用公式: \(f[i] = (f[i - 1] + 1) \times 2\) 即可。

另外我们为了简化代码,还可以这样:

\[f[i] = (f[i - 1] + 1) \times 2 \\ \ \ = f[i - 1] * 2 + 2

\]

化简式子之后就可以乘完再加上,然后统一处理进位。

完整代码:

有点懒,没用结构体,就让数组下标从 \(1\) 开始,然后 \(ans[0]\) 代表位数。

#include

using namespace std;

int ans[100001];

int main() {

int n;

cin >> n;

memset(ans, 0, sizeof(ans));

ans[0] = 1; // 位数

ans[1] = 2;

for (int i = 2; i <= n; ++i) {

for (int j = 1; j <= ans[0]; ++j) {

ans[j] *= 2;

}

ans[1] += 2;

for (int j = 1; j <= ans[0]; ++j) {

ans[j + 1] += ans[j] / 10;

ans[j] %= 10;

}

if (ans[ans[0] + 1] != 0) {

ans[0]++;

}

}

for (int i = ans[0]; i >= 1; --i) {

cout << ans[i];

}

}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值