左线性文法和右线性文法_线性代数-2.矩阵

c06f8e22a452da956ec9b63562d1e65e.png

基本构成

矩阵的构成,是简单而直观的。

若以三维向量空间为例,存在两个向量

,将它们列在一起然后用
或是
将它们括起来,即构成一个三列两行的矩阵:

虽然矩阵所代表的含义,从不同的角度与应用领域都有所不同,但是在线性代数中,我们还是从更为核心的向量及线性变换的角度出发去看待矩阵。

因此,可以看到,矩阵实际上,就如同我们在实数域中,将若干个实数用

括起来组成一个实数的集合一样,它则是将向量空间中的若干个向量组合在一起构成一个向量的集合。

不过,可以看到的一点是,一个矩阵中的向量都是同维的,即它们应该同属于一个由相同正交基向量所构成的向量空间中。但是,对于向量的数量,则没有必须大于1的要求,即便是单个向量也同样可以构成一个只有一列的矩阵。

譬如:

即为
的矩阵形式。

当矩阵的维数与列数相等时,可以称它为方阵,我们在线性代数中,着重研究的也是方阵。

如:

为一个
的方阵,我们也可以将方阵称为
阶矩阵,此处

当矩阵全部都由零向量构成时,也即矩阵所有的元素都为零,称其为零矩阵。在书写时为了方便,我们可以将零矩阵简记为粗体或大一些的

,但是我们的脑海里必须清楚,跟据向量的定义可知,向量空间中的0向量以及由0向量所构成的零矩阵,与标量数值0并非同一概念。

阶矩阵恰好由向量空间的单位正交基按序构成时,称其为单位矩阵,记为

如:

即为
阶单位矩阵。

并且还可以看到,这个矩阵还有一个特点即矩阵的主对角线以外的元素全为0,故,单位矩阵也可以被记作对角线矩阵:

,对角矩阵意味着这个矩阵中所有向量均相互正交。

由于矩阵是由向量空间的向量所构成,因此,它们和向量同样具有线性性质,故它们也同样满足线性运算的性质而有:

  1. 矩阵加法的交换、结合律(矩阵的加法,需要满足矩阵同型);
  2. 矩阵数乘的分配率、结合律。

对偶空间

有了矩阵样式的基本概念之后,暂且让我们先回到它的基本构成元素向量上来重新看待它的一些东西。

我们知道,若在一个由两个正交基向量

构成的平面线性空间中,一个向量
实际上也即是一个线性变换函数:

这个表达式,是在告诉我们:在确定两个正交基

后,对于这两个正交基分别施以数乘变换
而后相加的变换以后,就会得到向量

这时,若我们改变

的值,比如将它们替换为
,那么我们就获得了一个新的变换方式
,经过这个新的变换之后,将获得一个新的向量

故,可以说:在向量空间中,我们是在对确定不变的基向量施加不同的线性变换形式

接着,打开思路:如果,在这个变换中,我们确定不变的是

,而改变的是变换所施加的对象
,将它们替换成任意两个新的向量,则有:

可以看到,在这里,确定不变的是线性变换的形式,而不同的则是该变换形式所作用的向量。换句话说。

于是,沿着这种思路,若我们将向量空间

中的所有线性变换形式都提取出来,将它们组成一个新的空间,这个空间就叫做向量空间
的对偶空间,可以记作

对比来看:

在向量空间

中,我们是在对
相同的向量施加 不同的线性变换

而在对偶空间

中,我们是在对
不同的向量施加 相同的线性变换

在线性代数的范围内,对偶空间中的对偶这个词更偏向于表达它与原空间的对应关系;但若以更体现其自身特质的叫法来说,似乎更应该将它称为线性变换空间。因为,向量空间中的对象是线性变换的结果——向量;而对偶空间中的对象则是线性变换的形式——变换方式其本身。

如果我们以炒菜来比喻向量空间与对偶空间:

向量空间中的元素,是清蒸鲈鱼、红烧鲈鱼、水煮鲈鱼、糖醋鲈鱼等等各式各样的鲈鱼菜式;是我们对于同一食材鲈鱼,采用了各种不同的做法如清蒸、红烧、水煮、糖醋等等;

而对偶空间中的元素,则是对应向量空间中的清蒸、红烧、水煮、糖醋等等的,这些各式各样的烹饪方式;我们可以将任意一种烹饪方式,作用于各种不同的食材从而获得如红烧排骨、红烧蹄髈、红烧鸡块、红烧羊肉等等不同的菜。

而且,最为重要且方便的一点在于,对偶空间与向量空间一样具有线性性质,即在向量空间中的比例性与可加性对于对偶空间中的线性变换方式一样成立。


转置

与向量空间一样具有线性性质的对偶空间赋予了我们极其强大的能力。

让我们来看,若有一个

阶矩阵:

可以看到,一个矩阵所包含的就是向量空间中的向量——如果,我们将它们的线性变换形式抽取出来组成该向量空间的对偶空间,然后把对偶空间中的线性变换作用于另一个向量空间——这不就是为我们提供了将一组向量从一个向量空间映射到另一个向量空间的方法吗!

因此,我们来试着这样操作,在这个矩阵中,有两个线性函数:

根据线性函数的可加性,我们可以先将两个函数组合:

而后将其拆分,再把它们转为对偶空间中的线性变换函数:

在原变换
中,变换作用的是两个相同的向量;但我们提取的是变换方式,因此提取之后不变的是
,则并不需要作用对象必须是两个相同的向量。这里可以有
,也可以

然后,我们将这三个线性变换,作用于一对新的正交基

,则有:

在以正交基

确定的新二维平面中获得了三个新的向量
,以它们组成的矩阵即为:

我们发现这个映射变换的结果,就是矩阵的转置。

由此可以看到,对偶空间可以帮助我们将向量往低维、同维或者高维的其它任意向量空间作映射。

而对一个

矩阵的转置,则是将
维向量通过对偶空间映射为
维空间内的
个向量,我们将矩阵
的转置记作

同时,若以转置的角度再回看一个矩阵,我们发现:矩阵不仅仅可以单一的以行(row)为分割方式,看作是行向量空间内向量的集合;它同时也可以以列(column)为分割方式,同时描述了一种列向量所处向量空间与行向量所处向量空间之间相互映射的关系:

即:矩阵与转置矩阵实际上是同一对偶空间在两个不同向量空间的映射


线性方程组

到目前为止,我们都是在以向量的角度出发,来定义看待一个矩阵。这种方式虽然更体现线性的本质,但是毕竟它所处的视角,是更为理论而抽象的。

但是矩阵本身可以表示的含义是如此的丰富,以至于我们很难想象它的创造初衷仅仅是为了一种记录的方便。

如,有一个二元一次线性方程组:

为了更为方便的处理和记录这种方程组,将它以数字阵列的形式表示为:

这就是矩阵创造之处的形式,可以发现,在用矩阵表示线性方程组的过程中,实际上已经定义出了矩阵的乘法。并且,若以线性方程组的角度去看到矩阵,它的乘法是具有非常具象的现实意义的。

比如,在篮球比赛中,根据积分规则,一个球员有三种得分方式,分别是进一个三分球得3分、进一个两分球得2分、因对方犯规而获得的罚球每进一个得1分,故,我们将这种记分方式表示为一个矩阵:

现在,有一个球员,比如库里(Stephen Curry),他在一场比赛中,投中了7个三分,4个两分,1次罚球(这应该还是挺符合他风格的)。那么为了计算他的得分,则有:

,可以得出库里在这场比赛中一共砍下了33分;

接着,除了库里以外,现在我们还需要再多统计另一个球员,他的队友汤普森(Klay Thompson)的得分。汤普森是一个比库里更为纯粹的射手,他在这场比赛中命中了10个三分,2个两分和2次罚球,则我们在统计中加入汤普森的数据,有:

好了,若再进一步的。由于这场比赛是如此的重要,使得勇士队的管理层为球员们开出了得分奖励,每命中一记三分奖励2万美元、命中一个两分奖励5000美元,罚进一个罚球奖励1000美元。那么,在记分规则之外,又多了一个球队内部的奖励规则:

通过这个矩阵的乘法表达式,我们记录下了在这场比赛中,库里砍下了33分,获得了16.1万美元的奖金;汤普森得到了36分,获得了21.2万美元的奖金。

但是问题并没有结束,现在,如果我们将进行乘积运算的两个矩阵数表交换位置,那么得出的又将会是什么结果:

我们以试着以相同的运算规则,来计算一下:

其最终的计算结果为:

可以看到以统计球员得分与奖励的角度看,这是一个并没有什么意义的单纯的一张数表。

因此,从线性方程组的角度出发,所定义出的矩阵乘法具有两个特性:

  1. 左矩阵的列数必须与右矩阵的行数相一致;(如例子中:球员命中的次数类别,必须与记分规则的类别相一致);一个
    的矩阵
    的矩阵
    相乘,其结果是一个
    的新矩阵
  2. 矩阵的乘法不具有交换律:

矩阵的乘法

在有了矩阵乘法的定义之后,我们再回到向量的角度来看待这一运算,在向量空间中代表着什么。

若,在矩阵

由两个行向量
组成:

矩阵

由两个列向量
组成:

(没错,实际它可以被看作对一个行向量组成的矩阵进行转置)

则计算这两个矩阵乘积的过程为:

由上一章向量的运算中得以看出,计算结果矩阵中的每一项实际上是在计算两个向量的内积,即为:

但是,到此为止还不够,因为它给我们的映像依然还只是停留在代数运算上,我们需要更为具象的理解相乘究竟在干甚。

那么,接着来我们来看一个经典的特殊

的矩阵:

在这个矩阵中,包含有两个三角函数列向量

,它们的模长为:

且相互正交:

接着我们有另一个包含有单个列向量

的矩阵:

我们用矩阵

左乘矩阵
,则有:

利用矩阵

,我们将向量
变换为了一个新的向量:

先来计算一下它的模长:

可以看到,变换的过程中,向量

的长度并没有改变;

再计算一下变换前后两个向量的夹角:

可见变换前后的两个向量,其夹角恰为

,如果我们将这个计算过程,表示在图像变换上:

a25316755829c4d164fa987472f247b9.png
利用矩阵R完成对向量的旋转操作

可以看到,矩阵

左乘矩阵
的过程,可以看做是将正交基与矩阵
中列向量作为整体进行旋转。

若我们再进一步的透彻的去观察矩阵的乘法其实可以发现,矩阵的乘法本质上,是在对右侧矩阵的空间整体进行左侧矩阵所描述的变换,右侧矩阵的列向量随着空间整体的变换也相应发生变换的过程。

88cdbc2a1781b296b5f3b2f42f5f78e1.png
乘法即相当于带上右矩阵的列向量,让它随着空间整体的变换一起变换

其实现实生活中有着非常多的具象的例子,来体现矩阵乘法的过程,比如:

bb15a9d02577403768ff938057a1d6c6.png
伸缩拳头玩具

在这个小时候我们都见过的伸缩拳头玩具上,矩阵

相乘的过程:
  • 矩阵
    中的向量就是贴在伸缩杆上的红色箭头
  • 矩阵
    中的向量就是在描述伸缩杆的伸缩方式
  • 两个矩阵相乘的过程,就是红色箭头随着伸缩杆的伸缩而与桌面的位置发生变化的过程

对一个矩阵起始的向量空间整体进行缩放、拉伸、旋转等等线性变换,从而使得空间内的向量随着空间一起发生了相同的缩放、拉伸、旋转等变换,就是从向量的角度看待矩阵相乘的本质。

以上从线性方程组的定义出发,最终完成以向量为视角解释清楚矩阵乘法本质的过程,也给了我们一个重要的学习思路,即在线性代数的世界中,任何一个概念或者运算,都有着从线性方程组和向量组这两个主要的角度来分析理解的方式。


线性代数是什么

在前面《导数与微分》一文中,讨论微积分究竟在讲什么的问题时,我曾将微积分认为是一支描绘现实世界中各种事物的画笔,它为我们提供了解构与还原现实世界的工具。

但是,在微积分中我们所进行的种种分析与计算,它们终究都还是在抽象世界中进行的;我们所操作,研究的也都是数学世界中的种种数字、方程与函数。

如何真正的将具象的现实世界映射进抽象的数学世界,这就是线性代数的作用。换句话说,线性代数,是我们连接现实与虚拟的接口之一。

比如,你可以看到,在前面从线性方程组的角度出发,我们成功的将现实世界中的一场体育比赛映射成了三个矩阵的运算;从向量的角度出发,将现实世界中玩具的伸缩变化映射成了矩阵中的向量变换。

此外,更为我们所熟知的例子,如一张色彩丰富的照片可以通过线性代数映射为一个包含像素位置颜色信息的矩阵;一首悦耳的歌曲可以通过线性代数映射为音频信号的矩阵等等。

正因为有了线性代数的存在,才使得抽象理论中的种种数学工具能够作用于具象的实际应用。我们常常先运用线性代数将现实中的非线性的连续的事物抽象为线性的离散的数学模型,继而使得我们可以使用微积分的极限工具在数学世界中再将线性离散还原回非线性连续。

059daed240368a243e897aade22da9bc.gif
动作捕捉技术就是线性代数与微积分的联合

跟随着这一概念,在后面的学习中,我们将以线性方程组与向量组这两个角度对矩阵做更多的分析和运算,从而一步步的接近矩阵的核心。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值