本文介绍较简单的优化模型,归结微积分中函数的机制问题,可以直接用微分法求解。
1. 存贮模型
工厂订购原料,出售商品,都需要确定贮存量。
1.1不允许缺货的存贮模型
经济批量订货公式(EOQ公式)
用于订货、供应、存贮情形
每天需求量 r,每次订货费 c1,每天每件贮存费 c2 T天订货一次(周期), 每次订货Q件,当贮存量降到零时,Q件立即到货。
1.2允许缺货模型
原理较简单,使用时查阅运筹学存贮论部分。
2.生猪的出售时机
问题:饲养场每天投入4元资金,用于饲料、人力、设备,估计可使80千克重的生猪体重增加2公斤。市场价格目前为每千克8元,但是预测每天会降低 0.1元,问生猪应何时出售。如果估计和预测有误差,对结果有何影响。
敏感性分析:假设一个量不变的情况下,分析另一个参数。
可以用相对改变量衡量结果对参数的影响。
强健性分析:模型要考虑非线性和不确定性。
3.森林救火
综合考虑森林的损失费和救援费与消防人员之间的关系,以总费用最小来决定排出队员的多少。
4.消费者的选择
“消费者追求最大效用”是经济学最优化原理的一条,用数学建模的方法来帮助消费者决定他在市场里的选择。
效用函数
当消费者购得数量分别为x1和x2的甲乙两种商品时,给消费者带来的效用可以用一个数值来衡量,它是x1和x2的函数,记作u(x1,x2),称为效用函数。利用等高线的概念在x1,x2平面画出效用函数的等值线,称为等效用线。等效用线是一组单调减、下凸、互不相交的曲线。
效用最大化模型
设甲乙两商品的单价分别为p1和p2,消费者准备付出的钱数为y,则他购得的商品数满足
P1x1+p2x2=y
所谓效用最大化,就是在满足上式得情况下使效用函数最大。
如果知道了效用函数的解析表达式,那么可以按照二元函数的条件极值求解上述问题。引入拉格朗日乘子
由
,
,可得最优解满足
数学中的导数在经济学中一般称为边际,于是两个偏导称为边际效用。上式表明,当商品的效用之比等于它们的价格之比时,效用函数达到最大。
效用函数的构建
要对效用最大化模型进行分析,需要有效用函数的解析表达式。给出一个便于构造和检验的充分条件。
5.生产者的决策
生产者追求最大利润是经济学的另一条最优化原理
最大利润模型
众所周知,生产者的利润等于产品的产值减去成本,记生产者对产品的投入量为x,产值和成本都是x的函数,分别记作f(x)和c(x),则利润r(x)为
r(x)=f(x)-c(x)
使利润达到最大的投入量x*可以从r’(x*)=0得到
f'(x*)=c’(x*)
最大利润在边际产值等于边际成本时达到。这是经济学的一条著名定律。
6.血管分支
根据响应原理列方程。
7.冰山运输
根据数据列方程。