本文主要从中文文本分词、词频统计、词云绘制方面介绍Python中文文本分词的使用。会使用到的中文文本处理包包括:wordcloud,jieba,re(正则表达式),collections。
1 准备工作
导入相关的包,读取相关数据。
#导入包
import pandas as pd #数据处理包
import numpy as np #数据处理包
from wordcloud import WordCloud #绘制词云
import jieba #中文分词包
import jieba.posseg as pseg
import re #正则表达式,可用于匹配中文文本
import collections #计算词频
#读取数据,使用pandas读取csv
df_question = pd.read_csv("D:/data/raw_data_20200401_copy/question.csv",low_memory=False)
#选择问题描述部分
df_description = df_question["description"].drop_duplicates().reset_index() #去除重复问题
list_description = df_description["description"].tolist()
description_all = "start"
for i in range(999): #选定一定范围作为示范,全部处理实在太多了
description_all = description_all+list_description[i]
#选取中文:使用正则表达式
fi