python中的numpy入门教程_Numpy入门基础中文教程.pdf

Python

NumPy - 简介

NumPy 是一个 Python 包。 它代表 “Numeric Python”。 它是一个由多维数组对象和用于处理数组的例程集合组成的库。

Numeric,即 NumPy 的前身,是由 Jim Hugunin 开发的。 也开发了另一个包 Numarray ,它拥有一些额外的功能。 2005年,Travis Oliphant 通过将

Numarray 的功能集成到 Numeric 包中来创建 NumPy 包。 这个开源项目有很多贡献者。

NumPy 操作

使用NumPy,开发人员可以执行以下操作:

数组的算数和逻辑运算。

傅立叶变换和用于图形操作的例程。

与线性代数有关的操作。 NumPy 拥有线性代数和随机数生成的内置函数。

NumPy – MatLab 的替代之一

NumPy 通常与 SciPy (Scientific Python)和 Matplotlib(绘图库)一起使用。 这种组合广泛用于替代 MatLab,是一个流行的技术计算平台。 但是,Python 作

为 MatLab 的替代方案,现在被视为一种更加现代和完整的编程语言。

NumPy 是开源的,这是它的一个额外的优势。

NumPy - Ndarray 对象

NumPy 中定义的最重要的对象是称为 ndarray 的 N 维数组类型。 它描述相同类型的元素集合。 可以使用基于零的索引访问集合中的项目。

ndarray中的每个元素在内存中使用相同大小的块。 ndarray中的每个元素是数据类型对象的对象(称为 dtype)。

从ndarray对象提取的任何元素(通过切片)由一个数组标量类型的 Python 对象表示。 下图显示了ndarray,数据类型对象(dtype)和数组标量类型之间的关系。

Ndarray

ndarray类的实例可以通过本教程后面描述的不同的数组创建例程来构造。 基本的ndarray是使用 NumPy 中的数组函数创建的,如下所示:

1

2

numpy.array

3

4

它从任何暴露数组接口的对象,或从返回数组的任何方法创建一个ndarray。

1

2

numpy.array(object, dtype = None, copy = True, order = None, subok = False, ndmin = 0)

3

4

上面的构造器接受以下参数:

序号 参数及描述

1. object任何暴露数组接口方法的对象都会返回一个数组或任何(嵌套)序列。

2. dtype数组的所需数据类型,可选。

3. copy可选,默认为true,对象是否被复制。

4. orderC(按行)、F(按列)或A(任意,默认)。

5. subok默认情况下,返回的数组被强制为基类数组。如果为true,则返回子类。

6. ndmin指定返回数组的最小维数。

看看下面的例子来更好地理解。

示例 1

1

2

import numpy as np

3

a = np.array([1,2,3])

4

print a

5

输出如下:

1 [1, 2, 3]

2

示例 2

1

2

#

3

import numpy as np

4

a = np.array([[1, 2], [3, 4]])

5

print a

6

输出如下:

1 [[1, 2]

2 [3, 4]]

3

示例 3

1

2

#

3

import numpy as np

4

a = np.array([1, 2, 3,4,5], ndmin = 2)

5

print a

6

输出如下:

1 [[1, 2, 3, 4, 5]]

2

示例 4

1

2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值