
之前的GWAS分析中,我查看结果时有过这个疑问,随着不断的学习理解,我已经知道了为什么,这里将我思考的结果分享一下。
1. 错误的理解
某一个SNP,效应值(Effect)越大,就越显著???
「事实上:」 效应值和显著性是两码事!
2. 用代码说话
GWAS分析中,最简单的就是一般线性模型(GLM),而GLM模型进行的GWAS分析中,用R语言实现的代码如下:
mod_M7 = lm(phe.V3 ~ M7_1,data=dd)
summary(mod_M7)
「结果:」

这个里面:
- Estimate就是效应值:3.3265,这个就是SNP M9的效应值
- Pr就是P值:0.0272,这个就是SNP M9的P值
可以看到,这两个是两个指标,他们之间没有必然的联系。
3. GWAS分析的思路
- 1,将SNP的分型转化为
0, 1, 2
的形式,主效纯合(major)编码为0,杂合编码为1,次等位纯合编码为2 - 2,x变量为
0,1,2
的数值,y变量为性状表型值 - 3,对x和y做回归分析
y ~ a*x + b
,a为效应值,a是否显著的P值,为SNP的P值