gwas snp 和_GWAS分析中:为何有些SNP效应值大却不显著?

GWAS分析中,SNP的效应值大小并不直接决定其显著性。文章通过实例和代码解释了效应值大但P值不显著可能是因为异常值、环境影响或群体结构等因素,并探讨了效应值小却显著的生物学意义。同时,介绍了GWAS分析的基本思路和相关操作流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

f50562d9dcfc558e5acb6b0cac52323c.png

之前的GWAS分析中,我查看结果时有过这个疑问,随着不断的学习理解,我已经知道了为什么,这里将我思考的结果分享一下。

1. 错误的理解

某一个SNP,效应值(Effect)越大,就越显著???

「事实上:」 效应值和显著性是两码事!

2. 用代码说话

GWAS分析中,最简单的就是一般线性模型(GLM),而GLM模型进行的GWAS分析中,用R语言实现的代码如下:

mod_M7 = lm(phe.V3 ~ M7_1,data=dd)
summary(mod_M7)

「结果:」

d32ea5899813ce41c3420a781a81929b.png

这个里面:

  • Estimate就是效应值:3.3265,这个就是SNP M9的效应值
  • Pr就是P值:0.0272,这个就是SNP M9的P值

可以看到,这两个是两个指标,他们之间没有必然的联系。

3. GWAS分析的思路

  • 1,将SNP的分型转化为0, 1, 2的形式,主效纯合(major)编码为0,杂合编码为1,次等位纯合编码为2
  • 2,x变量为0,1,2的数值,y变量为性状表型值
  • 3,对x和y做回归分析y ~ a*x + b,a为效应值,a是否显著的P值,为SNP的P值

4. SNP效应值很大,却不显著

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值