决定系数 均方误差mse_回归模型评价指标 SSE, MSE、RMSE、MAE、R-SQUARED

文章详细介绍了回归模型的评价指标,包括SSE、MSE、RMSE、MAE和R-Squared。SSE越小表示模型拟合越好,但其值本身不具备比较意义。MSE和RMSE是SSE的均值形式,便于描述数据误差。MAE关注误差的绝对值,不受量纲影响。R-Squared是模型解释变量能力的度量,接近1表示模型拟合优。Adjusted R-Square则考虑了样本数量和特征数量,更适于不同数据集的模型比较。
摘要由CSDN通过智能技术生成

分类问题的评价指标是准确率,

常见回归算法的评价指标有SSE, MSE,RMSE,MAE、R-Squared。

误差平方和 SSE(Sum of Squares due to Error)

该统计参数计算的是拟合数据和原始数据对应点的误差的平方和

公式如下:

SSE越接近于0,说明模型选择和拟合更好,数据预测也越成功。接下来的MSE和RMSE因为和SSE是同出一宗,所以效果一样

补充:

计算公式如下:

同样的数据集的情况下,SSE越小,误差越小,模型效果越好

缺点:

SSE数值大小本身没有意义,随着样本增加,SSE必然增加,也就是说,不同的数据集的情况下,SSE比较没有意义

均方误差 MSE(Mean Squared Error)

公式如下:

该统计参数是预测数据和原始数据对应点误差的平方和的均值,也就是SSE/n,和SSE没有太大的区别

均方根误差 RMSE(Root Mean Squard Error)

公式如下:

回归系统的拟合标准差,是MSE的平方根,用于数据更好的描述。

例如:要做房

回归模型的评估指标包括MAE(平均绝对误差)、MSE均方误差)和RMSE(均方根误差)。MAE是预测值与实际值之间的绝对差值的平均值,MSE是预测值与实际值之间差值的平方的平均值,RMSEMSE的平方根。 为了判断回归模型的好坏,我们希望这些误差指标尽可能小。如果MAEMSERMSE都较小,说明模型的预测结果与实际值较接近,模型的拟合效果较好。 以下是计算MSE的Python代码示例: ```python from sklearn.metrics import mean_squared_error def MSE(Y_real, Y_pre): return mean_squared_error(Y_real, Y_pre) ``` 在这个代码中,`Y_real`是实际值,`Y_pre`是预测值。通过调用`mean_squared_error`函数,可以计算出MSE的值。 需要注意的是,对于RMSE,可以通过对MSE的结果取平方根得到。因此,RMSE的计算可以在MSE的基础上进行。 希望这个回答对您有帮助! #### 引用[.reference_title] - *1* *2* [回归问题的评价指标 MAE MSE RMSE R2 score Adjusted R2 score 和 重要知识点总结](https://blog.csdn.net/HzauTriste/article/details/127562028)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [回归模型评估指标(MAEMSERMSE、R²、MAPE)](https://blog.csdn.net/y15659037739l/article/details/123971286)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值