linux xgboost4j安装,Ubuntu18.04 安装xgboost GPU版配置

CUDA安装

首先要到英伟达官网下载对应版本cuda工具包,使用GPU需要有cuda。

45645c2ee2dae876a544ce36dabe8de4.png

38b481a4530b44d9878e12ec3f24b55c.png

配置好环境变量

1)在~/.bashrc中添加如下

export PATH = /usr/local/cuda-11.1/bin:$PATH

export LD_LIBRARY_PATH = /usr/local/cuda-11.1/lib64:$LD_LIBRARY_PATH

使环境变量生效

source  ~/.bashrc

2)配置 /etc/ld.so.conf.d/cuda-11.1.conf

添加如下内容

/usr/local/cuda-11.1/lib64

使库生效

sudo ldconfig

termimal 输入“nvcc --version” 或者“nvcc -V”,显示如下,代表cuda安装成功

3a5d45e129066b326769c2d5b8acd0c1.png

安装GPU版的xgboost

安装步骤如下:

git clone --recursive https://github.com/dmlc/xgboost

cd xgboost

mkdir build

cd build

cmake .. -DUSE_CUDA=ON     -- 会报错

make -4j

cd python-package

python setup.py install

安装cmake时会报错,ubuntu 18.04默认安装的cmake版本是3.10,xgboost 要求cmake version >=3.13。

解决方法是:

删除系统中已安装的cmake

sudo apt purge cmake

下载cmake 3.13.4的源,也可以是再高点的版本,可以到cmake github 地址选择

wget https://github.com/Kitware/CMake/releases/download/v3.13.4/cmake-3.13.4.tar.gz

解压文件

tar zxvf cmake-3.13.4.tar.gz

打开文件夹,执行以下命令

cd cmake-3.13.4

sudo ./bootstrap

sudo make

sudo make install

验证已安装的版本是否正确

cmake --version

测试GPU

在xgboost/tests/benchmark下分别执行

python benchmark_tree.py --tree_method gpu_hist

python benchmark_tree.py --tree_method hist

发现gpu版运行7秒,cpu版运行282秒,速度提升非常快了。

在实际代码中,只要添加下面的参数就可以:

Python example

param['gpu_id'] = 0 #选择设备序号(如果有许多设备,则使用哪个GPU) ,该参数默认为0(CUDA运行时报告的第一个设备)。param['tree_method'] = 'gpu_hist' #等效于XGBoost快速直方图算法。快得多,并使用更少的内存。注意:在比Pascal架构更早的GPU上运行可能会非常缓慢。等效于XGBoost快速直方图算法。快得多,并使用更少的内存。注意:在比Pascal架构更早的GPU上运行可能会非常缓慢。

With Scikit-Learn interface

XGBRegressor(tree_method='gpu_hist', gpu_id=0)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值