python爬楼梯问题_使用python算法解决楼梯台阶问题方法详解

python

开发中,我们经常需要实现各种各样的问题,今天和大家分享的就是使用

python

算法实现楼梯台阶问题,希望对大家

学习

python

有所帮助。

首先,

让我们考虑以下问题

有一个有

N

个台阶的楼梯,你一次可以爬

1

2

个台阶。

给定

N

,编写一个函数,返回爬完楼梯的方式数量。步骤的顺序很重要。

例如,如果

N

4

,那么有

5

种方式:

. 1,1,1,1

. 2,1,1

. 1,2,1

. 1,1,2

. 2,2

如果规定的不是一次只能爬

1

2

步,而是可以使用正整数

X

集合内的任意数字爬楼梯,那会怎么样?例如,如果

X= {1,3,5}

,则表示一次爬升

1

3

5

阶楼梯。

解决方案

从一些测试案例开始总是好的做法。让我们从小的案例开始,看看能否找到某种规律。

. N = 1

1

种爬楼方式:

[1]

. N = 2

2

种爬楼方式:

[1,1]

[2]

. N = 3

3

种爬楼方式:

[1,2]

[1,1,1]

[2,1]

. N = 4

5

种爬楼方式:

[1,1,2]

[2,2]

[1,2,1]

[1,1,1,1]

[2,1,1]

你有没有注意到什么?请看

N= 3

时,爬完

3

阶楼梯的方法数量是

3

,基于

N = 1

N = 2

。存在什么关系?

爬完

N= 3

的两种方法是首先达到

N= 1

,然后再往上爬

2

步,或达到

N =2

再向上爬

1

步。所以

f(3)= f(2) + f(1)

这对

N= 4

是否成立呢?是的,这也是成立的。因为我们只能在达到第三个台阶然后再爬一步,或者在到了第二个台阶之后再爬两步这两种方式爬完

4

个台阶。所以

f(4) = f(3) + f(2)

所以关系如下:

f(n) = f(n – 1) + f(n – 2)

,且

f(1)= 1

f(2)= 2

。这就是斐波那契数列。

def

fibonacci

(n):

if

n<= 1:

return

1

return

fibonacci(n- 1) + fibonacci(n - 2)

当然,这很慢(

O(2^N)

)

——

我们要做很多重复的计算!通过迭代计算,我们可以更快:

def

fibonacci

(n):

a, b = 1, 2

for

_

in

range(n - 1):

a, b = b, a + b

return

a

现在,让我们尝试概括我们学到的东西,看看是否可以应用到从集合

X

中取步数这个要求下的爬楼梯。类似的推理告诉我们,如果

X= {1,3,5}

,那么我们的算法应该是

f(n)= f(n – 1) + f(n – 3) + f(n – 5)

。如果

n<0

,那么我们应该返回

0

,因为我们不能爬负数。

def

staircase

(n,X):

if

n< 0:

return

0

elif

n== 0:

return

1

elif

n

in

X:

return

1+ sum(staircase(n - x, X)

for

x

in

X

if

x < n)

else

:

return

sum(staircase(n- x, X)

for

x

in

X

if

x < n)

这也很慢(

O(|X|^N)

),因为也重复计算了。我们可以使用动态编程来加快速度。

每次的输入

cache[i]

将包含我们可以用集合

X

到达台阶

i

的方法的数量。然后,我们将使用与之前相同的递归从零开始构建数组:

def

staircase

(n,X):

cache = [0

for

_

in

range(n + 1)]

cache[0] = 1

for

i

in

range(n + 1):

cache[i] += sum(cache[i- x]

for

x

in

X

if

i - x > 0)

cache[i] += 1

if

i

in

X

else

0

return

cache[-1]

现在时间复杂度为

O(N* |X|)

,空间复杂度为

O(N)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值