题目
有n级台阶。从地面(第0级)出发,首先连续的上台阶,上到不超过第n级的某一个位置后再连续的下台阶,直到回到地面。若每次上下台阶只允许走1级或2级,请问可能的上下台阶的方案数是多少?
特别地,在0级站着不动也算一种方案。
数据格式:
输入一行包含两个正整数n和m。
输出一个整数,表示n级台阶有多少种合法的走楼梯方案,答案对m取余。
例如:输入:
2 10007
程序应该输出
6
【样例说明1】
共有6种方案(其中+表示上台阶,-表示下台阶):
(1) 原地不动
(2) +1 -1
(3) +2 -2
(4) +2 -1 -1
(5) +1 +1 -2
(6) +1 +1 -1 -1
再例如,输入:
3 14
程序应该输出:
1
【样例说明2】
共有15种方案,对14取余后得1。
【数据规模】
对于30%的数据,n<=10000;
对于100%的数据,n<=1017,m<=2*109。
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意:不要使用package语句。不要使用jdk1.7及以上版本的特性。
注意:主类的名字必须是:Main,否则按无效代码处理。
思路
这道题大家看应该知道是用斐波那契数,然后数据规模为10^17很明显不能用递归.
根据题目给出的测试用例可以得出答案等于 f(n+1) * f(n) = 总次数, 总次数去摸就是答案了.
这样问题就变成了如何快速求指定的斐波那契数,就要矩阵快速幂了.
这俩张图是我学习的找到的.参考一下就好了. 下面是代码
import java.util.Scanner;
import java.math.BigInteger;
public class Day10_11 {
public static long n, m;
public static BigInteger MOD;
public static BigInteger zero = BigInteger.ZERO;
public static BigInteger one = BigInteger.ONE;
public BigInteger[][] key = {
{
one, one},{
one, zero