bootstrap文件不能被识别_树莓派安装openCV做图像识别

有时候我们会使用树莓派和摄像头去做图像识别,在树莓派和LINUX系统中最常用opencv去做图像识别,这次来介绍下树莓派安装opencv和用树莓派做图像识别。

一、树莓派的系统

安装就不介绍了。直接开机打开树莓派的命令窗口,安装openCV的依赖包,步骤有点多。

1.1 更新系统

$ sudo apt-get update$ sudo apt-get upgrade

1.2 安装编译openCV源码的工具

$ sudo apt-get install build-essential cmake pkg-config

1.3 安装一些常见格式的图像处理和视频处理的包,方便我们能从硬盘上读取不同格式的图像和视频

$ sudo apt-get install libjpeg-dev libtiff5-dev libjasper-dev libpng12-dev$ sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev$ sudo apt-get install libxvidcore-dev libx264-dev

1.4 openCV用于图像展示的功能需要依模块

$ sudo apt-get install libgtk2.0-dev$ sudo apt-get install libatlas-base-dev gfortran

接下来还需要安装python dev

sudo apt-get install python2.7-dev python3-dev

二、下载 并解压OpenCV 的资源库

$ cd ~$ wget -O opencv.zip https://github.com/Itseez/opencv/archive/3.1.0.zip$ unzip opencv.zip$ wget -O opencv_contrib.zip https://github.com/Itseez/opencv_contrib/archive/3... $ unzip opencv_contrib.zip

三、接下来准备python的开发环境

3.1 安装python包管理器:

$ wget https://bootstrap.pypa.io/get-pip.py $ sudo python get-pip.py

3.2 安装python虚拟环境

$ sudo pip install virtualenv virtualenvwrapper$ sudo rm -rf ~/.cache/pip

之后在~/.profile文件最后添加几行

# virtualenv and virtualenvwrapperexport WORKON_HOME=$HOME/.virtualenvssource /usr/local/bin/virtualenvwrapper.sh

3.3 接下来就是生成一个python虚拟环境用于opencv的开发环境

$ mkvirtualenv cv -p python3

打开一个命令窗口,执行下列命令,确认我们的cv环境已经生成好了

$ source ~/.profile$ workon cv

如果命令窗口前面的文字变成了(cv)则表明我们已成功创建了名为cv的python虚拟环境

cce0e404c48fabdeb4436de7028137be.png

3.4 在cv虚拟环境下安装numpy

(cv) -> ~ $ pip install numpy

接下来的操作都要保持在cv环境中。

四、编译和安装openCV

4.1 一定要在cv环境里,接下来用cmake进行编译opencv

$ cd ~/opencv-3.1.0/$ mkdir build$ cd build$ cmake -D ENABLE_PRECOMPILED_HEADERS=OFF \-D CMAKE_BUILD_TYPE=RELEASE \ -D CMAKE_INSTALL_PREFIX=/usr/local \ -D INSTALL_PYTHON_EXAMPLES=ON \ -D OPENCV_EXTRA_MODULES_PATH=~/opencv_contrib-3.1.0/modules \ -D BUILD_EXAMPLES=ON ..

4.2 开始编译opencv

$ make -j4

编译过程大概会用好几个小时,请耐心等候,-j 是使用多少线程进行编译,在树莓派上使用的单线程编译,虽然速度会慢很多,但是不会死机,用-j4会有死机的可能。如果-j后不加数字,则默认不限制线程编译。

编译过程如下

03da174c171f4746cda705cdb458ab6a.png

4.3 安装opencv

$ sudo make install$ sudo ldconfig

4.4 python虚拟环境中链接到opencv模块

我们需要将cv2.cpython-34m.so重命名为cv2.so

$ cd /usr/local/lib/python3.4/site-packages/$ sudo mv cv2.cpython-34m.so cv2.so

然后将python虚拟环境中的cv2.so链接到上面刚被改名为cv2.so的文件上

$ cd ~/.virtualenvs/cv/lib/python3.4/site-packages/$ ln -s /usr/local/lib/python3.4/site-packages/cv2.so cv2.so

99745c4c8fac818632fbe8d5e9f2f091.png

五、测试OpenCV3是否安装成功

$ source ~/.profile $ workon cv$ python>>> import cv2>>> cv2.__version__'3.1.0'>>>

2863ed0f7fdc48efd6dc39355b0e8b8a.png

六、完成OpenCV的开发环境后,就可以跑几个简单的图像识别的DEMO

其DEMO放在/usr/local/share/OpenCV/sample/python目录下

a765c71934fa51476edb1d8203886303.png

我们将/usr/local/share/OpenCV/sample/文件拷贝到Downloads/sample/文件夹下

9150ccb0daf59b0e7e076cef165ef762.png

跑几个DEMO

边缘检测算法:(cv)   python edge.py

54d90676e3c5e048539c816fa49de847.png

模式识别算法:(cv)   python find_obj.py

82499ab2eac2f376dd7bfda07f441656.png

运动方向检测:(cv)   python lk_track.py

a463435c5fd70973f82f0de582355dd9.png

大功告成,opencv是树莓派进行图像处理和识别的常用工具,如果配合树莓派CSI的摄像头获取相片并识别处理将会更加有趣,可以做成人脸识别或者人脸追踪。

- END -

往期推荐

● 在玩乐中学编程——DFRobot Maqueen麦昆机器人小车评测

● 基于51单片机的电子式温度调节器设计-整套毕设资料

● 物联网全新硬件解决方案——5款好用的MCU推荐

  欢迎加入微信群  

加入与非社群,找到同道,一起切磋技艺、化解难题。

当然还有不定期的红包雨等着你哦!

2f45b761e26e276a1a40992771ec0fc4.png

与非网大大(小编)微信

注意: 

添加小编微信后,回复对应关键词+公司+岗位,方可被拉入社群,否则一律禁止入群,每人只可申请一个技术群。

关键词:嵌入式、模拟、人工智能、RF、传感器、汽车电子、物联网、IC设计、EDA、PCB、开源硬件、树莓派。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值