前段时间,小刘从硬盘找了以前的笔记,总结,和大家分享一下
一、ElasticSearch 介绍
1、简介
Elasticsearch是一个基于Lucene的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java语言开发的,并作为Apache许可条款下的开放源码发布,是一种流行的企业级搜索引擎。Elasticsearch用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。官方客户端在Java、.NET(C#)、PHP、Python、Apache Groovy、Ruby和许多其他语言中都是可用的。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr,也是基于Lucene
就连Github都是用ElasticSearch做词条搜索
0. 带着问题上路——ES是如何产生的?
(1)思考:大规模数据如何检索?
如:当系统数据量上了10亿、100亿条的时候,我们在做系统架构的时候通常会从以下角度去考虑问题:
1)用什么数据库好?(mysql、sybase、oracle、达梦、神通、mongodb、hbase…)
2)如何解决单点故障;(lvs、F5、A10、Zookeep、MQ)
3)如何保证数据安全性;(热备、冷备、异地多活)
4)如何解决检索难题;(数据库代理中间件:mysql-proxy、Cobar、MaxScale等;)
5)如何解决统计分析问题;(离线、近实时)
(2)传统数据库的应对解决方案
对于关系型数据,我们通常采用以下或类似架构去解决查询瓶颈和写入瓶颈:
解决要点:
1)通过主从备份解决数据安全性问题;
2)通过数据库代理中间件心跳监测,解决单点故障问题;
3)通过代理中间件将查询语句分发到各个slave节点进行查询,并汇总结果
3)非关系型数据库的解决方案
对于Nosql数据库,以mongodb为例,其它原理类似:
解决要点:
1)通过副本备份保证数据安全性;
2)通过节点竞选机制解决单点问题;
3)先从配置库检索分片信息,然后将请求分发到各个节点,最后由路由节点合并汇总结果
另辟蹊径——完全把数据放入内存怎么样?
我们知道,完全把数据放在内存中是不可靠的,实际上也不太现实,当我们的数据达到PB级别时,按照每个节点96G内存计算,在内存完全装满的数据情况下,我们需要的机器是:1PB=1024T=1048576G
节点数=1048576/96=10922个
实际上,考虑到数据备份,节点数往往在2.5万台左右。成本巨大决定了其不现实!
从前面讨论我们了解到,把数据放在内存也好,不放在内存也好,都不能完完全全解决问题。
全部放在内存速度问题是解决了,但成本问题上来了。
为解决以上问题,从源头着手分析,通常会从以下方式来寻找方法:
1、存储数据时按有序存储;
2、将数据和索引分离;
3、压缩数据;
这就引出了Elasticsearch。
二、ElasticSearch 和数据库概念
1、ElaticSearch 和 DB 的关系
在 Elasticsearch 中,文档归属于一种类型 type,而这些类型存在于索引 index 中,我们可以列一些简单的不同点,来类比传统关系型数据库:
- Relational DB -> Databases -> Tables -> Rows -> Columns
- Elasticsearch -> Indices -> Types -> Documents -> Fields
Elasticsearch 集群可以包含多个索引 indices,每一个索引可以包含多个类型 types,每一个类型包含多个文档 documents,然后每个文档包含多个字段 Fields。而在 DB 中可以有多个数据库 Databases,每个库中可以有多张表 Tables,没个表中又包含多行Rows,每行包含多列Columns。
ElasticSearch的对象模型,跟关系型数据库模型相比:
索引(Index):相当于数据库,用于定义文档类型的存储;在同一个索引中,同一个字段只能定义一个数据类型;
文档类型(Type):相当于关系表,用于描述文档中的各个字段的定义;不同的文档类型,能够存储不同的字段,服务于不同的查询请求;
ElasticSearch的对象模型,跟关系型数据库模型相比:
索引(Index):相当于数据库,用于定义文档类型的存储;在同一个索引中,同一个字段只能定义一个数据类型;
文档类型(Type):相当于关系表,用于描述文档中的各个字段的定义;不同的文档类型,能够存储不同的字段,服务于不同的查询请求;
文档(Document):相当于关系表的数据行,存储数据的载体,包含一个或多个存有数据的字段;
字段(Field):文档的一个Key/Value对;
词(Term):表示文本中的一个单词;
标记(Token):表示在字段中出现的词,由该词的文本、偏移量(开始和结束)以及类型组成;
索引是由段(Segment)组成的,段存储在硬盘(Disk)文件中,段不是实时更新的,这意味着,段在写入磁盘后,就不再被更新。ElasticSearch引擎把被删除的文档的信息存储在一个单独的文件中,在搜索数据时,
ElasticSearch引擎首先从段中查询,再从查询结果中过滤被删除的文档,这意味着,段中存储着“被删除”的文档,这使得段中含有”正常文档“的密度降低。多个段可以通过段合并(Segment Merge)操作把“已删除”的文档将从段中物理删除,把未删除的文档合并到一个新段中,新段中没有”已删除文档“,因此,段合并操作能够提高索引的查找速度,但段合并是IO密集型的操作,需要消耗大量的硬盘IO。
三、SpringBoot集成ElasticSearch 介绍
下面介绍下 SpringBoot 如何通过 elasticsearch-rest-high-level-client 工具操作 ElasticSearch,这里需要说一下,为什么没有使用 Spring 家族封装的 spring-data-elasticsearch。
主要原因是灵活性和更新速度,Spring 将 ElasticSearch 过度封装,让开发者很难跟 ES 的 DSL 查询语句进行关联。再者就是更新速度,ES 的更新速度是非常快,但是 spring-data-elasticsearch 更新速度比较缓慢。
由于上面两点,所以选择了官方推出的 Java 客户端 elasticsearch-rest-high-level-client,它的代码写法跟 DSL 语句很相似,懂 ES 查询的使用其上手很快。
1、Maven 引入相关依赖
- lombok:lombok 工具依赖。
- fastjson:用于将 JSON 转换对象的依赖。
- spring-boot-starter-web:SpringBoot 的 Web 依赖。
- elasticsearch:ElasticSearch:依赖,需要和 ES 版本保持一致。
- elasticsearch-rest-high-level-client:用于操作 ES 的 Java 客户端。
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0modelVersion>
<parent>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-starter-parentartifactId>
<version>2.2.4.RELEASEversion>
<relativePath/>
parent>
<groupId>cloud.spiritmarkgroupId>
<artifactId>springboot-elasticsearch-exampleartifactId>
<version>0.0.1-SNAPSHOTversion>
<name>springboot-elasticsearch-examplename>
<description>Demo project for ElasticSearchdescription>
<properties>
<java.version>1.8java.version>
properties>
<dependencies>
<dependency>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-starter-webartifactId>
dependency>
<dependency>
<groupId>org.projectlombokgroupId>
<artifactId>lombokartifactId>
<optional>trueoptional>
dependency>
<dependency>
<groupId>org.elasticsearch.clientgroupId>
<artifactId>elasticsearch-rest-high-level-clientartifactId>
<version>6.5.4version>
dependency>
<dependency>
<groupId>org.elasticsearchgroupId>
<artifactId>elasticsearchartifactId>
<version>6.5.4version>
dependency>
dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-maven-pluginartifactId>
plugin>
plugins>
build>
project>
2、ElasticSearch 配置
(1)、application.yml 配置文件
为了方便更改连接 ES 的连接配置,所以我们将配置信息放置于 application.yaml 中:
#base
server:
port: 8080
#spring
spring:
application:
name: springboot-elasticsearch
#elasticsearch
elasticsearch:
schema: http
address: 127.0.0.1:9200
connectTimeout: 5000
socketTimeout: 5000
connectionRequestTimeout: 5000
maxConnectNum: 100
maxConnectPerRoute: 100
(2)、java 连接配置类
这里需要写一个 Java 配置类读取 application 中的配置信息:
import org.apache.http.HttpHost;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestClientBuilder;
import org.elasticsearch.client.RestHighLevelClient;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import java.util.ArrayList;
import java.util.List;
/**
* ElasticSearch 配置
*/
@Configuration
public class ElasticSearchConfig {
/** 协议 */
@Value("${elasticsearch.schema:http}")
private String schema;
/** 集群地址,如果有多个用“,”隔开 */
@Value("${elasticsearch.address}")
private String address;
/** 连接超时时间 */
@Value("${elasticsearch.connectTimeout:5000}")
private int connectTimeout;
/** Socket 连接超时时间 */
@Value("${elasticsearch.socketTimeout:10000}")
private int socketTimeout;
/** 获取连接的超时时间 */
@Value("${elasticsearch.connectionRequestTimeout:5000}")
private int connectionRequestTimeout;
/** 最大连接数 */
@Value("${elasticsearch.maxConnectNum:100}")
private int maxConnectNum;
/** 最大路由连接数 */
@Value("${elasticsearch.maxConnectPerRoute:100}")
private int maxConnectPerRoute;
@Bean
public RestHighLevelClient restHighLevelClient() {
// 拆分地址
List hostLists = new ArrayList<>();
String[] hostList = address.split(",");for (String addr : hostList) {
String host = addr.split(":")[0];
String port = addr.split(":")[1];
hostLists.add(new HttpHost(host, Integer.parseInt(port), schema));
}// 转换成 HttpHost 数组
HttpHost[] httpHost = hostLists.toArray(new HttpHost[]{});// 构建连接对象
RestClientBuilder builder = RestClient.builder(httpHost);// 异步连接延时配置
builder.setRequestConfigCallback(requestConfigBuilder -> {
requestConfigBuilder.setConnectTimeout(connectTimeout);
requestConfigBuilder.setSocketTimeout(socketTimeout);
requestConfigBuilder.setConnectionRequestTimeout(connectionRequestTimeout);return requestConfigBuilder;
});// 异步连接数配置
builder.setHttpClientConfigCallback(httpClientBuilder -> {
httpClientBuilder.setMaxConnTotal(maxConnectNum);
httpClientBuilder.setMaxConnPerRoute(maxConnectPerRoute);return httpClientBuilder;
});return new RestHighLevelClient(builder);
}
}
四、索引操作示例
1、Restful 操作示例
创建索引
创建名为 mydlq-user 的索引与对应 Mapping。
请求格式 :PUT /mydlq-user
{
"mappings": {
"doc": {
"dynamic": true,
"properties": {
"name": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword"
}
}
},
"address": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword"
}
}
},
"remark": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword"
}
}
},
"age": {
"type": "integer"
},
"salary": {
"type": "float"
},
"birthDate": {
"type": "date",
"format": "yyyy-MM-dd"
},
"createTime": {
"type": "date"
}
}
}
}
}
删除索引
删除 mydlq-user 索引。
DELETE /mydlq-user
2、Java 代码示例
import lombok.extern.slf4j.Slf4j;
import org.elasticsearch.action.admin.indices.create.CreateIndexRequest;
import org.elasticsearch.action.admin.indices.create.CreateIndexResponse;
import org.elasticsearch.action.admin.indices.delete.DeleteIndexRequest;
import org.elasticsearch.action.support.master.AcknowledgedResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.common.settings.Settings;
import org.elasticsearch.common.xcontent.XContentBuilder;
import org.elasticsearch.common.xcontent.XContentFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import java.io.IOException;
@Slf4j
@Service
public class IndexService2 {
@Autowired
private RestHighLevelClient restHighLevelClient;
/**
* 创建索引
*/
public void createIndex() {
try {
// 创建 Mapping
XContentBuilder mapping = XContentFactory.jsonBuilder()
.startObject()
.field("dynamic", true)
.startObject("properties")
.startObject("name")
.field("type","text")
.startObject("fields")
.startObject("keyword")
.field("type","keyword")
.endObject()
.endObject()
.endObject()
.startObject("address")
.field("type","text")
.startObject("fields")
.startObject("keyword")
.field("type","keyword")
.endObject()
.endObject()
.endObject()
.startObject("remark")
.field("type","text")
.startObject("fields")
.startObject("keyword")
.field("type","keyword")
.endObject()
.endObject()
.endObject()
.startObject("age")
.field("type","integer")
.endObject()
.startObject("salary")
.field("type","float")
.endObject()
.startObject("birthDate")
.field("type","date")
.field("format", "yyyy-MM-dd")
.endObject()
.startObject("createTime")
.field("type","date")
.endObject()
.endObject()
.endObject();
// 创建索引配置信息,配置
Settings settings = Settings.builder()
.put("index.number_of_shards", 1)
.put("index.number_of_replicas", 0)
.build();
// 新建创建索引请求对象,然后设置索引类型(ES 7.0 将不存在索引类型)和 mapping 与 index 配置
CreateIndexRequest request = new CreateIndexRequest("mydlq-user", settings);
request.mapping("doc", mapping);
// RestHighLevelClient 执行创建索引
CreateIndexResponse createIndexResponse = restHighLevelClient.indices().create(request, RequestOptions.DEFAULT);
// 判断是否创建成功
boolean isCreated = createIndexResponse.isAcknowledged();
log.info("是否创建成功:{}", isCreated);
} catch (IOException e) {
log.error("", e);
}
}
/**
* 删除索引
*/
public void deleteIndex() {
try {
// 新建删除索引请求对象
DeleteIndexRequest request = new DeleteIndexRequest("mydlq-user");
// 执行删除索引
AcknowledgedResponse acknowledgedResponse = restHighLevelClient.indices().delete(request, RequestOptions.DEFAULT);
// 判断是否删除成功
boolean siDeleted = acknowledgedResponse.isAcknowledged();
log.info("是否删除成功:{}", siDeleted);
} catch (IOException e) {
log.error("", e);
}
}
}
五、ElasticSearch操作示例
1、Restful 操作示例
增加文档信息
在索引 mydlq-user 中增加一条文档信息。
POST /mydlq-user/doc
{
"address": "北京市",
"age": 29,
"birthDate": "1990-01-10",
"createTime": 1579530727699,
"name": "张三",
"remark": "来自北京市的张先生",
"salary": 100
}
获取文档信息
获取 mydlq-user 的索引 id=1 的文档信息。
GET /mydlq-user/doc/1
更新文档信息
更新之前创建的 id=1 的文档信息。
PUT /mydlq-user/doc/1
{
"address": "北京市海淀区",
"age": 29,
"birthDate": "1990-01-10",
"createTime": 1579530727699,
"name": "张三",
"remark": "来自北京市的张先生",
"salary": 100
}
删除文档信息
删除之前创建的 id=1 的文档信息。
DELETE /mydlq-user/doc/1
2、Java 代码示例
import cloud.spiritmark.elasticsearch.model.entity.UserInfo;
import com.alibaba.fastjson.JSON;
import lombok.extern.slf4j.Slf4j;
import org.elasticsearch.action.delete.DeleteRequest;
import org.elasticsearch.action.delete.DeleteResponse;
import org.elasticsearch.action.get.GetRequest;
import org.elasticsearch.action.get.GetResponse;
import org.elasticsearch.action.index.IndexRequest;
import org.elasticsearch.action.index.IndexResponse;
import org.elasticsearch.action.update.UpdateRequest;
import org.elasticsearch.action.update.UpdateResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.common.xcontent.XContentType;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import java.io.IOException;
import java.util.Date;
@Slf4j
@Service
public class IndexService {
@Autowired
private RestHighLevelClient restHighLevelClient;
/**
* 增加文档信息
*/
public void addDocument() {
try {
// 创建索引请求对象
IndexRequest indexRequest = new IndexRequest("mydlq-user", "doc", "1");
// 创建员工信息
UserInfo userInfo = new UserInfo();
userInfo.setName("张三");
userInfo.setAge(29);
userInfo.setSalary(100.00f);
userInfo.setAddress("北京市");
userInfo.setRemark("来自北京市的张先生");
userInfo.setCreateTime(new Date());
userInfo.setBirthDate("1990-01-10");
// 将对象转换为 byte 数组
byte[] json = JSON.toJSONBytes(userInfo);
// 设置文档内容
indexRequest.source(json, XContentType.JSON);
// 执行增加文档
IndexResponse response = restHighLevelClient.index(indexRequest, RequestOptions.DEFAULT);
log.info("创建状态:{}", response.status());
} catch (Exception e) {
log.error("", e);
}
}
/**
* 获取文档信息
*/
public void getDocument() {
try {
// 获取请求对象
GetRequest getRequest = new GetRequest("mydlq-user", "doc", "1");
// 获取文档信息
GetResponse getResponse = restHighLevelClient.get(getRequest, RequestOptions.DEFAULT);
// 将 JSON 转换成对象
if (getResponse.isExists()) {
UserInfo userInfo = JSON.parseObject(getResponse.getSourceAsBytes(), UserInfo.class);
log.info("员工信息:{}", userInfo);
}
} catch (IOException e) {
log.error("", e);
}
}
/**
* 更新文档信息
*/
public void updateDocument() {
try {
// 创建索引请求对象
UpdateRequest updateRequest = new UpdateRequest("mydlq-user", "doc", "1");
// 设置员工更新信息
UserInfo userInfo = new UserInfo();
userInfo.setSalary(200.00f);
userInfo.setAddress("北京市海淀区");
// 将对象转换为 byte 数组
byte[] json = JSON.toJSONBytes(userInfo);
// 设置更新文档内容
updateRequest.doc(json, XContentType.JSON);
// 执行更新文档
UpdateResponse response = restHighLevelClient.update(updateRequest, RequestOptions.DEFAULT);
log.info("创建状态:{}", response.status());
} catch (Exception e) {
log.error("", e);
}
}
/**
* 删除文档信息
*/
public void deleteDocument() {
try {
// 创建删除请求对象
DeleteRequest deleteRequest = new DeleteRequest("mydlq-user", "doc", "1");
// 执行删除文档
DeleteResponse response = restHighLevelClient.delete(deleteRequest, RequestOptions.DEFAULT);
log.info("删除状态:{}", response.status());
} catch (IOException e) {
log.error("", e);
}
}
}
六、插入初始化数据
执行查询示例前,先往索引中插入一批数据:
1、单条插入
POST mydlq-user/_doc
{"name":"小白","address":"北京市海定区","remark":"低层员工","age":29,"salary":3000,"birthDate":"1990-11-11","createTime":"2019-11-11T08:18:00.000Z"}
2、批量插入
POST _bulk
{"index":{"_index":"mydlq-user","_type":"doc"}}
{"name":"刘一","address":"北京市丰台区","remark":"低层员工","age":30,"salary":3000,"birthDate":"1989-11-11","createTime":"2019-03-15T08:18:00.000Z"}
{"index":{"_index":"mydlq-user","_type":"doc"}}
{"name":"陈二","address":"北京市昌平区","remark":"中层员工","age":27,"salary":7900,"birthDate":"1992-01-25","createTime":"2019-11-08T11:15:00.000Z"}
{"index":{"_index":"mydlq-user","_type":"doc"}}
{"name":"张三","address":"北京市房山区","remark":"中层员工","age":28,"salary":8800,"birthDate":"1991-10-05","createTime":"2019-07-22T13:22:00.000Z"}
{"index":{"_index":"mydlq-user","_type":"doc"}}
{"name":"李四","address":"北京市大兴区","remark":"高层员工","age":26,"salary":9000,"birthDate":"1993-08-18","createTime":"2019-10-17T15:00:00.000Z"}
{"index":{"_index":"mydlq-user","_type":"doc"}}
{"name":"王五","address":"北京市密云区","remark":"低层员工","age":31,"salary":4800,"birthDate":"1988-07-20","createTime":"2019-05-29T09:00:00.000Z"}
{"index":{"_index":"mydlq-user","_type":"doc"}}
{"name":"赵六","address":"北京市通州区","remark":"中层员工","age":32,"salary":6500,"birthDate":"1987-06-02","createTime":"2019-12-10T18:00:00.000Z"}
{"index":{"_index":"mydlq-user","_type":"doc"}}
{"name":"孙七","address":"北京市朝阳区","remark":"中层员工","age":33,"salary":7000,"birthDate":"1986-04-15","createTime":"2019-06-06T13:00:00.000Z"}
{"index":{"_index":"mydlq-user","_type":"doc"}}
{"name":"周八","address":"北京市西城区","remark":"低层员工","age":32,"salary":5000,"birthDate":"1987-09-26","createTime":"2019-01-26T14:00:00.000Z"}
{"index":{"_index":"mydlq-user","_type":"doc"}}
{"name":"吴九","address":"北京市海淀区","remark":"高层员工","age":30,"salary":11000,"birthDate":"1989-11-25","createTime":"2019-09-07T13:34:00.000Z"}
{"index":{"_index":"mydlq-user","_type":"doc"}}
{"name":"郑十","address":"北京市东城区","remark":"低层员工","age":29,"salary":5000,"birthDate":"1990-12-25","createTime":"2019-03-06T12:08:00.000Z"}
{"index":{"_index":"mydlq-user","_type":"doc"}}
{"name":"萧十一","address":"北京市平谷区","remark":"低层员工","age":29,"salary":3300,"birthDate":"1990-11-11","createTime":"2019-03-10T08:17:00.000Z"}
{"index":{"_index":"mydlq-user","_type":"doc"}}
{"name":"曹十二","address":"北京市怀柔区","remark":"中层员工","age":27,"salary":6800,"birthDate":"1992-01-25","createTime":"2019-12-03T11:09:00.000Z"}
{"index":{"_index":"mydlq-user","_type":"doc"}}
{"name":"吴十三","address":"北京市延庆区","remark":"中层员工","age":25,"salary":7000,"birthDate":"1994-10-05","createTime":"2019-07-27T14:22:00.000Z"}
{"index":{"_index":"mydlq-user","_type":"doc"}}
{"name":"冯十四","address":"北京市密云区","remark":"低层员工","age":25,"salary":3000,"birthDate":"1994-08-18","createTime":"2019-04-22T15:00:00.000Z"}
{"index":{"_index":"mydlq-user","_type":"doc"}}
{"name":"蒋十五","address":"北京市通州区","remark":"低层员工","age":31,"salary":2800,"birthDate":"1988-07-20","createTime":"2019-06-13T10:00:00.000Z"}
{"index":{"_index":"mydlq-user","_type":"doc"}}
{"name":"苗十六","address":"北京市门头沟区","remark":"高层员工","age":32,"salary":11500,"birthDate":"1987-06-02","createTime":"2019-11-11T18:00:00.000Z"}
{"index":{"_index":"mydlq-user","_type":"doc"}}
{"name":"鲁十七","address":"北京市石景山区","remark":"高员工","age":33,"salary":9500,"birthDate":"1986-04-15","createTime":"2019-06-06T14:00:00.000Z"}
{"index":{"_index":"mydlq-user","_type":"doc"}}
{"name":"沈十八","address":"北京市朝阳区","remark":"中层员工","age":31,"salary":8300,"birthDate":"1988-09-26","createTime":"2019-09-25T14:00:00.000Z"}
{"index":{"_index":"mydlq-user","_type":"doc"}}
{"name":"吕十九","address":"北京市西城区","remark":"低层员工","age":31,"salary":4500,"birthDate":"1988-11-25","createTime":"2019-09-22T13:34:00.000Z"}
{"index":{"_index":"mydlq-user","_type":"doc"}}
{"name":"丁二十","address":"北京市东城区","remark":"低层员工","age":33,"salary":2100,"birthDate":"1986-12-25","createTime":"2019-03-07T12:08:00.000Z"}
3、查询数据
插入完成后再查询数据,查看之前插入的数据是否存在:
GET mydlq-user/_search
执行后得到下面记录:
{
"took": 2,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 20,
"max_score": 1,
"hits": [
{
"_index": "mydlq-user",
"_type": "_doc",
"_id": "BeN0BW8B7BNodGwRFTRj",
"_score": 1,
"_source": {
"name": "刘一",
"address": "北京市丰台区",
"remark": "低层员工",
"age": 30,
"salary": 3000,
"birthDate": "1989-11-11",
"createTime": "2019-03-15T08:18:00.000Z"
}
},
{
"_index": "mydlq-user",
"_type": "_doc",
"_id": "BuN0BW8B7BNodGwRFTRj",
"_score": 1,
"_source": {
"name": "陈二",
"address": "北京市昌平区",
"remark": "中层员工",
"age": 27,
"salary": 7900,
"birthDate": "1992-01-25",
"createTime": "2019-11-08T11:15:00.000Z"
}
},
{
"_index": "mydlq-user",
"_type": "_doc",
"_id": "B-N0BW8B7BNodGwRFTRj",
"_score": 1,
"_source": {
"name": "张三",
"address": "北京市房山区",
"remark": "中层员工",
"age": 28,
"salary": 8800,
"birthDate": "1991-10-05",
"createTime": "2019-07-22T13:22:00.000Z"
}
},
{
"_index": "mydlq-user",
"_type": "_doc",
"_id": "CON0BW8B7BNodGwRFTRj",
"_score": 1,
"_source": {
"name": "李四",
"address": "北京市大兴区",
"remark": "高层员工",
"age": 26,
"salary": 9000,
"birthDate": "1993-08-18",
"createTime": "2019-10-17T15:00:00.000Z"
}
},
{
"_index": "mydlq-user",
"_type": "_doc",
"_id": "CeN0BW8B7BNodGwRFTRj",
"_score": 1,
"_source": {
"name": "王五",
"address": "北京市密云区",
"remark": "低层员工",
"age": 31,
"salary": 4800,
"birthDate": "1988-07-20",
"createTime": "2019-05-29T09:00:00.000Z"
}
},
{
"_index": "mydlq-user",
"_type": "_doc",
"_id": "CuN0BW8B7BNodGwRFTRj",
"_score": 1,
"_source": {
"name": "赵六",
"address": "北京市通州区",
"remark": "中层员工",
"age": 32,
"salary": 6500,
"birthDate": "1987-06-02",
"createTime": "2019-12-10T18:00:00.000Z"
}
},
{
"_index": "mydlq-user",
"_type": "_doc",
"_id": "C-N0BW8B7BNodGwRFTRj",
"_score": 1,
"_source": {
"name": "孙七",
"address": "北京市朝阳区",
"remark": "中层员工",
"age": 33,
"salary": 7000,
"birthDate": "1986-04-15",
"createTime": "2019-06-06T13:00:00.000Z"
}
},
{
"_index": "mydlq-user",
"_type": "_doc",
"_id": "DON0BW8B7BNodGwRFTRj",
"_score": 1,
"_source": {
"name": "周八",
"address": "北京市西城区",
"remark": "低层员工",
"age": 32,
"salary": 5000,
"birthDate": "1987-09-26",
"createTime": "2019-01-26T14:00:00.000Z"
}
},
{
"_index": "mydlq-user",
"_type": "_doc",
"_id": "DeN0BW8B7BNodGwRFTRj",
"_score": 1,
"_source": {
"name": "吴九",
"address": "北京市海淀区",
"remark": "高层员工",
"age": 30,
"salary": 11000,
"birthDate": "1989-11-25",
"createTime": "2019-09-07T13:34:00.000Z"
}
},
{
"_index": "mydlq-user",
"_type": "_doc",
"_id": "DuN0BW8B7BNodGwRFTRj",
"_score": 1,
"_source": {
"name": "郑十",
"address": "北京市东城区",
"remark": "低层员工",
"age": 29,
"salary": 5000,
"birthDate": "1990-12-25",
"createTime": "2019-03-06T12:08:00.000Z"
}
}
]
}
}
七、查询操作示例
1、精确查询(term)
(1)、Restful 操作示例
精确查询
精确查询,查询地址为 北京市通州区 的人员信息:
查询条件不会进行分词,但是查询内容可能会分词,导致查询不到。之前在创建索引时设置 Mapping 中 address 字段存在 keyword 字段是专门用于不分词查询的子字段。
GET mydlq-user/_search
{
"query": {
"term": {
"address.keyword": {
"value": "北京市通州区"
}
}
}
}
精确查询-多内容查询
精确查询,查询地址为 北京市丰台区、北京市昌平区 或 北京市大兴区 的人员信息:
GET mydlq-user/_search
{
"query": {
"terms": {
"address.keyword": [
"北京市丰台区",
"北京市昌平区",
"北京市大兴区"
]
}
}
}
(2)、Java 代码示例
import cloud.spiritmark.elasticsearch.model.entity.UserInfo;
import com.alibaba.fastjson.JSON;
import lombok.extern.slf4j.Slf4j;
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.rest.RestStatus;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.SearchHits;
import org.elasticsearch.search.builder.SearchSourceBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import java.io.IOException;
@Slf4j
@Service
public class TermQueryService {
@Autowired
private RestHighLevelClient restHighLevelClient;
/**
* 精确查询(查询条件不会进行分词,但是查询内容可能会分词,导致查询不到)
*/
public void termQuery() {
try {
// 构建查询条件(注意:termQuery 支持多种格式查询,如 boolean、int、double、string 等,这里使用的是 string 的查询)
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.query(QueryBuilders.termQuery("address.keyword", "北京市通州区"));
// 创建查询请求对象,将查询对象配置到其中
SearchRequest searchRequest = new SearchRequest("mydlq-user");
searchRequest.source(searchSourceBuilder);
// 执行查询,然后处理响应结果
SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
// 根据状态和数据条数验证是否返回了数据
if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().totalHits > 0) {
SearchHits hits = searchResponse.getHits();
for (SearchHit hit : hits) {
// 将 JSON 转换成对象
UserInfo userInfo = JSON.parseObject(hit.getSourceAsString(), UserInfo.class);
// 输出查询信息
log.info(userInfo.toString());
}
}
} catch (IOException e) {
log.error("", e);
}
}
/**
* 多个内容在一个字段中进行查询
*/
public void termsQuery() {
try {
// 构建查询条件(注意:termsQuery 支持多种格式查询,如 boolean、int、double、string 等,这里使用的是 string 的查询)
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.query(QueryBuilders.termsQuery("address.keyword", "北京市丰台区", "北京市昌平区", "北京市大兴区"));
// 创建查询请求对象,将查询对象配置到其中
SearchRequest searchRequest = new SearchRequest("mydlq-user");
searchRequest.source(searchSourceBuilder);
// 执行查询,然后处理响应结果
SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
// 根据状态和数据条数验证是否返回了数据
if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().totalHits > 0) {
SearchHits hits = searchResponse.getHits();
for (SearchHit hit : hits) {
// 将 JSON 转换成对象
UserInfo userInfo = JSON.parseObject(hit.getSourceAsString(), UserInfo.class);
// 输出查询信息
log.info(userInfo.toString());
}
}
} catch (IOException e) {
log.error("", e);
}
}
}
2、匹配查询(match)
(1)、Restful 操作示例
匹配查询全部数据与分页
匹配查询符合条件的所有数据,并且设置以 salary 字段升序排序,并设置分页:
GET mydlq-user/_search
{
"query": {
"match_all": {}
},
"from": 0,
"size": 10,
"sort": [
{
"salary": {
"order": "asc"
}
}
]
}
匹配查询数据
匹配查询地址为 通州区 的数据:
GET mydlq-user/_search
{
"query": {
"match": {
"address": "通州区"
}
}
}
词语匹配查询
词语匹配进行查询,匹配 address 中为 北京市通州区 的员工信息:
GET mydlq-user/_search
{
"query": {
"match_phrase": {
"address": "北京市通州区"
}
}
}
内容多字段查询
查询在字段 address、remark 中存在 北京 内容的员工信息:
GET mydlq-user/_search
{
"query": {
"multi_match": {
"query": "北京",
"fields": ["address","remark"]
}
}
}
(2)、Java 代码示例
import cloud.spiritmark.elasticsearch.model.entity.UserInfo;
import com.alibaba.fastjson.JSON;
import lombok.extern.slf4j.Slf4j;
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.index.query.MatchAllQueryBuilder;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.rest.RestStatus;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.SearchHits;
import org.elasticsearch.search.builder.SearchSourceBuilder;
import org.elasticsearch.search.sort.SortOrder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import java.io.IOException;
@Slf4j
@Service
public class MatchQueryService {
@Autowired
private RestHighLevelClient restHighLevelClient;
/**
* 匹配查询符合条件的所有数据,并设置分页
*/
public Object matchAllQuery() {
try {
// 构建查询条件
MatchAllQueryBuilder matchAllQueryBuilder = QueryBuilders.matchAllQuery();
// 创建查询源构造器
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.query(matchAllQueryBuilder);
// 设置分页
searchSourceBuilder.from(0);
searchSourceBuilder.size(3);
// 设置排序
searchSourceBuilder.sort("salary", SortOrder.ASC);
// 创建查询请求对象,将查询对象配置到其中
SearchRequest searchRequest = new SearchRequest("mydlq-user");
searchRequest.source(searchSourceBuilder);
// 执行查询,然后处理响应结果
SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
// 根据状态和数据条数验证是否返回了数据
if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().totalHits > 0) {
SearchHits hits = searchResponse.getHits();
for (SearchHit hit : hits) {
// 将 JSON 转换成对象
UserInfo userInfo = JSON.parseObject(hit.getSourceAsString(), UserInfo.class);
// 输出查询信息
log.info(userInfo.toString());
}
}
} catch (IOException e) {
log.error("", e);
}
}
/**
* 匹配查询数据
*/
public Object matchQuery() {
try {
// 构建查询条件
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.query(QueryBuilders.matchQuery("address", "*通州区"));
// 创建查询请求对象,将查询对象配置到其中
SearchRequest searchRequest = new SearchRequest("mydlq-user");
searchRequest.source(searchSourceBuilder);
// 执行查询,然后处理响应结果
SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
// 根据状态和数据条数验证是否返回了数据
if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().totalHits > 0) {
SearchHits hits = searchResponse.getHits();
for (SearchHit hit : hits) {
// 将 JSON 转换成对象
UserInfo userInfo = JSON.parseObject(hit.getSourceAsString(), UserInfo.class);
// 输出查询信息
log.info(userInfo.toString());
}
}
} catch (IOException e) {
log.error("", e);
}
}
/**
* 词语匹配查询
*/
public Object matchPhraseQuery() {
try {
// 构建查询条件
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.query(QueryBuilders.matchPhraseQuery("address", "北京市通州区"));
// 创建查询请求对象,将查询对象配置到其中
SearchRequest searchRequest = new SearchRequest("mydlq-user");
searchRequest.source(searchSourceBuilder);
// 执行查询,然后处理响应结果
SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
// 根据状态和数据条数验证是否返回了数据
if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().totalHits > 0) {
SearchHits hits = searchResponse.getHits();
for (SearchHit hit : hits) {
// 将 JSON 转换成对象
UserInfo userInfo = JSON.parseObject(hit.getSourceAsString(), UserInfo.class);
// 输出查询信息
log.info(userInfo.toString());
}
}
} catch (IOException e) {
log.error("", e);
}
}
/**
* 内容在多字段中进行查询
*/
public Object matchMultiQuery() {
try {
// 构建查询条件
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.query(QueryBuilders.multiMatchQuery("北京市", "address", "remark"));
// 创建查询请求对象,将查询对象配置到其中
SearchRequest searchRequest = new SearchRequest("mydlq-user");
searchRequest.source(searchSourceBuilder);
// 执行查询,然后处理响应结果
SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
// 根据状态和数据条数验证是否返回了数据
if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().totalHits > 0) {
SearchHits hits = searchResponse.getHits();
for (SearchHit hit : hits) {
// 将 JSON 转换成对象
UserInfo userInfo = JSON.parseObject(hit.getSourceAsString(), UserInfo.class);
// 输出查询信息
log.info(userInfo.toString());
}
}
} catch (IOException e) {
log.error("", e);
}
}
}
3、模糊查询(fuzzy)
(1)、Restful 操作示例
模糊查询所有以 三 结尾的姓名
GET mydlq-user/_search
{
"query": {
"fuzzy": {
"name": "三"
}
}
}
(2)、Java 代码示例
import cloud.spiritmark.elasticsearch.model.entity.UserInfo;
import com.alibaba.fastjson.JSON;
import lombok.extern.slf4j.Slf4j;
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.common.unit.Fuzziness;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.rest.RestStatus;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.SearchHits;
import org.elasticsearch.search.builder.SearchSourceBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import java.io.IOException;
@Slf4j
@Service
public class FuzzyQueryService {
@Autowired
private RestHighLevelClient restHighLevelClient;
/**
* 模糊查询所有以 “三” 结尾的姓名
*/
public Object fuzzyQuery() {
try {
// 构建查询条件
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.query(QueryBuilders.fuzzyQuery("name", "三").fuzziness(Fuzziness.AUTO));
// 创建查询请求对象,将查询对象配置到其中
SearchRequest searchRequest = new SearchRequest("mydlq-user");
searchRequest.source(searchSourceBuilder);
// 执行查询,然后处理响应结果
SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
// 根据状态和数据条数验证是否返回了数据
if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().totalHits > 0) {
SearchHits hits = searchResponse.getHits();
for (SearchHit hit : hits) {
// 将 JSON 转换成对象
UserInfo userInfo = JSON.parseObject(hit.getSourceAsString(), UserInfo.class);
// 输出查询信息
log.info(userInfo.toString());
}
}
} catch (IOException e) {
log.error("", e);
}
}
}