python重复值清空_数据清洗与预处理-Python实现

本文介绍了Python数据清洗的概念和重要性,包括处理重复值和缺失值。通过实例展示了如何使用pandas库中的drop_duplicates()和fillna()函数来去除重复行和填充缺失值,并提到了数据集成和数据变换的基本方法。
摘要由CSDN通过智能技术生成

这个Python版本必须是3.7的

首先讲一下数据清洗与预处理的定义

在百度百科中的定义是 - 数据清洗是指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。与问卷审核不同,录入后的数据清理一般是由计算机而不是人工完成。

我自己理解的是,在我们不管是机器学习建模还是进行数据分析或者数据挖掘操作,我们首先都需要对数据进行预处理。我们拿到手的初始数据往往会存在缺失值、重复值、异常值或者错误值,影响实验结果,我们就需要进行数据清洗。或者是想要保持数据的一致性,也可以数据清洗。有时数据的原始变量不满足分析的要求,我们需要先对数据进行一定的处理,也就是数据的预处理。

数据清洗与预处理的目的是提高数据的质量,提高实验结果的可靠度。

连接数据库

import numpy as np

from pandas import DataFrame

import pandas as pd

import matplotlib.pyplot as plt

导入数据集

假设我们有一个已知的数据集如下:

{state’:[‘a’,‘b’,‘c’,‘a’,‘b’,‘c’],

‘year’:[2018,2016,2017,2018,2016,2017],

‘average’:[87,85,88,87,85,88]},

from pandas import DataFrame

#导入数据集

data = {'state':['a','b','c','a','b','c'],

'year&

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 支持向量机非线性回归通用MATLAB程序解析 #### 一、概述 本文将详细介绍一个基于MATLAB的支持向量机(SVM)非线性回归的通用程序。该程序采用支持向量机方法来实现数据的非线性回归,并通过不同的核函数置来适应不同类型的数据分布。此外,该程序还提供了数据预处理的方法,使得用户能够更加方便地应用此程序解决实际问题。 #### 二、核心功能与原理 ##### 1. 支持向量机(SVM) 支持向量机是一种监督学习模型,主要用于分类和回归分析。对于非线性回归任务,SVM通过引入核技巧(kernel trick)将原始低维空间中的非线性问题转换为高维空间中的线性问题,从而实现有效的非线性建模。 ##### 2. 核函数 核函数的选择直接影响到模型的性能。本程序内置了三种常用的核函数: - **线性核函数**:`K(x, y) = x'y` - **多项式核函数**:`K(x, y) = (x'y + 1)^d` - **径向基函数(RBF)**:`K(x, y) = exp(-γ|x - y|^2)` 其中RBF核函数被广泛应用于非线性问题中,因为它可以处理非常复杂的非线性关系。本程序默认使用的是RBF核函数,参数`D`用于控制高斯核函数的宽度。 ##### 3. 数据预处理 虽然程序本身没有直接涉及数据预处理的过程,但在实际应用中,对数据进行适当的预处理是非常重要的。常见的预处理步骤包括归一化、缺失处理等。 ##### 4. 模型参数 - **Epsilon**: ε-insensitive loss function的ε,控制回归带宽。 - **C**: 松弛变量的惩罚系数,控制模型复杂度与过拟合的风险之间的平衡。 #### 三、程序实现细节 ##### 1. 函数输入与输出 - **输入**: - `X`: 输入特征矩阵,维度为(n, l),其中n是特征数量,l是样本数量。 - `Y`: 目标向量,长度为l。 - `Epsilon`: 回归带宽。 - `C`: 松弛变量的惩罚系数。 - `D`: RBF核函数的参数。 - **输出**: - `Alpha1`: 正的拉格朗日乘子向量。 - `Alpha2`: 负的拉格朗日乘子向量。 - `Alpha`: 拉格朗日乘子向量。 - `Flag`: 标记向量,表示每个样本的类型。 - `B`: 偏置项。 ##### 2. 核心代码解析 程序首先计算所有样本间的核矩阵`K`,然后构建二次规划问题并求解得到拉格朗日乘子向量。根据拉格朗日乘子的确定支持向量,并计算偏置项`B`。 - **核矩阵计算**:采用RBF核函数,通过`exp(-(sum((xi-xj).^2)/D))`计算任意两个样本之间的相似度。 - **二次规划**:构建目标函数和约束条件,使用`quadprog`函数求解最小化问题。 - **支持向量识别**:根据拉格朗日乘子的大小判断每个样本是否为支持向量,并据此计算偏置项`B`。 #### 四、程序扩展与优化 - **多核函数支持**:可以通过增加更多的核函数选项,提高程序的灵活性。 - **自动调参**:实现参数自动选择的功能,例如通过交叉验证选择最优的`Epsilon`和`C`。 - **并行计算**:利用MATLAB的并行计算工具箱加速计算过程,特别是当样本量很大时。 #### 五、应用场景 该程序适用于需要进行非线性回归预测的场景,如经济预测、天气预报等领域。通过调整核函数和参数,可以有效应对各种类型的非线性问题。 ### 总结 本程序提供了一个支持向量机非线性回归的完整实现框架,通过灵活的核函数置和参数调整,能够有效地处理非线性问题。对于需要进行回归预测的应用场景,这是一个非常实用且强大的工具。
Python中,我们可以使用PyTorch框架来实现Transformer模型进行时间序列预测。下面是一个简单的示例代码,演示了如何使用Transformer模型对时间序列进行预测。 首先,我们需要导入相关的库和模块: ```python import torch import torch.nn as nn import torch.optim as optim import numpy as np ``` 接着,我们可以定义一个Transformer模型,其中包含了一个Encoder和一个Decoder: ```python class TransformerModel(nn.Module): def __init__(self, input_dim, output_dim, hid_dim, n_layers, n_heads, pf_dim, dropout): super().__init__() self.encoder = nn.Sequential( nn.Linear(input_dim, hid_dim), nn.ReLU(), nn.Linear(hid_dim, hid_dim), nn.ReLU(), nn.Linear(hid_dim, hid_dim), nn.ReLU(), nn.Linear(hid_dim, hid_dim), nn.ReLU(), nn.Linear(hid_dim, hid_dim), nn.ReLU(), nn.Linear(hid_dim, hid_dim), nn.ReLU(), nn.Linear(hid_dim, hid_dim), nn.ReLU(), nn.Linear(hid_dim, hid_dim), nn.ReLU() ) self.decoder = nn.Sequential( nn.Linear(output_dim, hid_dim), nn.ReLU(), nn.Linear(hid_dim, hid_dim), nn.ReLU(), nn.Linear(hid_dim, hid_dim), nn.ReLU(), nn.Linear(hid_dim, hid_dim), nn.ReLU(), nn.Linear(hid_dim, hid_dim), nn.ReLU(), nn.Linear(hid_dim, hid_dim), nn.ReLU(), nn.Linear(hid_dim, hid_dim), nn.ReLU(), nn.Linear(hid_dim, hid_dim), nn.ReLU(), nn.Linear(hid_dim, output_dim), ) self.dropout = nn.Dropout(dropout) def forward(self, src, trg): src = self.encoder(src) trg = self.decoder(trg) return trg ``` 在上述代码中,我们假输入序列和输出序列的维度都为`input_dim`和`output_dim`。我们使用了一个包含多个线性层的Encoder来对输入序列进行编码,同时使用了一个包含多个线性层的Decoder来对输出序列进行解码。在模型的前向传播过程中,我们首先将输入序列和输出序列分别输入到Encoder和Decoder中,然后将Decoder的输出作为模型的预测结果进行返回。 接下来,我们可以定义一个函数来读取并预处理数据: ```python def read_data(filename): data = np.loadtxt(filename, delimiter=',') inputs = data[:, :-1] outputs = data[:, -1:] return inputs, outputs def prepare_data(inputs, outputs, window_size): X, Y = [], [] for i in range(len(inputs) - window_size): X.append(inputs[i:i+window_size]) Y.append(outputs[i+window_size]) return np.array(X), np.array(Y) ``` 在上述代码中,我们首先使用`np.loadtxt`函数来从文件中读取数据,然后将输入数据和输出数据分别存储在`inputs`和`outputs`中。接着,我们使用`prepare_data`函数来对数据进行预处理,其中`window_size`表示滑动窗口的大小。在预处理过程中,我们将输入序列和输出序列分别切分成多个子序列,以便于模型的训练。 接下来,我们可以定义一个函数来训练模型: ```python def train_model(model, train_inputs, train_outputs, valid_inputs, valid_outputs, batch_size, n_epochs, lr): optimizer = optim.Adam(model.parameters(), lr=lr) criterion = nn.MSELoss() n_train = len(train_inputs) n_valid = len(valid_inputs) for epoch in range(n_epochs): train_loss = 0.0 valid_loss = 0.0 model.train() for i in range(0, n_train, batch_size): optimizer.zero_grad() inputs = torch.tensor(train_inputs[i:i+batch_size], dtype=torch.float32) outputs = torch.tensor(train_outputs[i:i+batch_size], dtype=torch.float32) preds = model(inputs, outputs[:-1]) loss = criterion(preds, outputs[1:]) loss.backward() optimizer.step() train_loss += loss.item() model.eval() with torch.no_grad(): for i in range(0, n_valid, batch_size): inputs = torch.tensor(valid_inputs[i:i+batch_size], dtype=torch.float32) outputs = torch.tensor(valid_outputs[i:i+batch_size], dtype=torch.float32) preds = model(inputs, outputs[:-1]) loss = criterion(preds, outputs[1:]) valid_loss += loss.item() print(f'Epoch: {epoch+1:02}') print(f'Train Loss: {train_loss/n_train:.6f}') print(f'Valid Loss: {valid_loss/n_valid:.6f}') ``` 在上述代码中,我们首先定义了一个Adam优化器和一个均方误差损失函数,然后使用一个循环来进行模型的训练。在每个训练循环中,我们首先使用`optimizer.zero_grad()`函数来清空优化器中的梯度信息,然后将输入序列和输出序列分别转换为`torch.tensor`类型,并使用模型进行预测。接着,我们使用损失函数来计算预测结果与真实结果之间的误差,并使用`loss.backward()`函数来计算梯度信息。最后,我们使用`optimizer.step()`函数来更新模型的参数。在每个训练循环结束后,我们还需要使用`model.eval()`函数来将模型切换到评估模式,并使用`torch.no_grad()`函数来关闭梯度计算,以加快模型的计算速度。 最后,我们可以使用如下代码来运行模型: ```python inputs, outputs = read_data('data.csv') train_inputs, train_outputs = prepare_data(inputs[:800], outputs[:800], 24) valid_inputs, valid_outputs = prepare_data(inputs[800:], outputs[800:], 24) model = TransformerModel(input_dim=24, output_dim=1, hid_dim=64, n_layers=1, n_heads=1, pf_dim=32, dropout=0.1) train_model(model, train_inputs, train_outputs, valid_inputs, valid_outputs, batch_size=32, n_epochs=100, lr=0.001) ``` 在上述代码中,我们首先使用`read_data`函数从文件中读取数据,并使用`prepare_data`函数对数据进行预处理。然后,我们定义了一个包含一个Encoder和一个Decoder的Transformer模型,并使用`train_model`函数对模型进行训练。在训练过程中,我们使用了滑动窗口大小为24,批次大小为32,学习率为0.001的超参数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值