java快速排序代码_Java编程实现快速排序及优化代码详解

普通快速排序

找一个基准值base,然后一趟排序后让base左边的数都小于base,base右边的数都大于等于base。再分为两个子数组的排序。如此递归下去。

public class QuickSort {

public static > void sort(T[] arr) {

sort(arr, 0, arr.length - 1);

}

public static > void sort(T[] arr, int left, int right) {

if (left >= right) return;

int p = partition(arr, left, right);

sort(arr, left, p - 1);

sort(arr, p + 1, right);

}

private static > int partition(T[] arr, int left, int right) {

T base = arr[left];

int j = left;

for (int i = left + 1; i <= right; i++) {

if (base.compareTo(arr[i]) > 0) {

j++;

swap(arr, j, i);

}

}

swap(arr, left, j);

return j;

//返回一躺排序后基准值的下角标

}

public static void swap(Object[] arr, int i, int j) {

if (i != j) {

Object temp = arr[i];

arr[i] = arr[j];

arr[j] = temp;

}

}

private static void printArr(Object[] arr) {

for (Object o : arr) {

System.out.print(o);

System.out.print("\t");

}

System.out.println();

}

public static void main(String args[]) {

Integer[] arr = {3, 5, 1, 7, 2, 9, 8, 0, 4, 6};

printArr(arr);

//3 5 1 7 2 9 8 0 4 6

sort(arr);

printArr(arr);

//0 1 2 3 4 5 6 7 8 9

}

}

快速排序优化:随机选取基准值base

在数组几乎有序时,快排性能不好(因为每趟排序后,左右两个子递归规模相差悬殊,大的那部分最后很可能会达到O(n^2))。

解决:基准值随机地选取,而不是每次都取第一个数。这样就不会受“几乎有序的数组”的干扰了。但是对“几乎乱序的数组”的排序性能可能会稍微下降,至少多了排序前交换的那部分,乱序时这个交换没有意义...有很多“运气”成分..

public class QuickSort {

public static > void sort(T[] arr) {

sort(arr, 0, arr.length - 1);

}

public static > void sort(T[] arr, int left, int right) {

if (left >= right) return;

int p = partition(arr, left, right);

sort(arr, left, p - 1);

sort(arr, p + 1, right);

}

private static > int partition(T[] arr, int left, int right) {

//排序前,先让基准值和随机的一个数进行交换。这样,基准值就有随机性。

//就不至于在数组相对有序时,导致左右两边的递归规模不一致,产生最坏时间复杂度

swap(arr,left,(int)(Math.random()*(right - left + 1)+left));

T base = arr[left];

int j = left;

for (int i = left + 1; i <= right; i++) {

if (base.compareTo(arr[i]) > 0) {

j++;

swap(arr, j, i);

}

}

swap(arr, left, j);

return j;

//返回一躺排序后,基准值的下角标

}

public static void swap(Object[] arr, int i, int j) {

if (i != j) {

Object temp = arr[i];

arr[i] = arr[j];

arr[j] = temp;

}

}

private static void printArr(Object[] arr) {

for (Object o : arr) {

System.out.print(o);

System.out.print("\t");

}

System.out.println();

}

public static void main(String args[]) {

Integer[] arr = {3, 5, 1, 7, 2, 9, 8, 0, 4, 6};

printArr(arr);

//3 5 1 7 2 9 8 0 4 6

sort(arr);

printArr(arr);

//0 1 2 3 4 5 6 7 8 9

}

}

快速排序继续优化:配合着使用插入排序

快排是不断减小问题规模来解决子问题的,需要不断递归。但是递归到规模足够小时,如果继续采用这种 不稳定+递归 的方式执行下去,效率不见得会很好。

所以当问题规模较小时,近乎有序时,插入排序表现的很好。Java自带的Arrays.sort()里经常能看到这样的注释:“Use insertion sort on tiny arrays”,“Insertion sort on smallest arrays”

public class QuickSort {

public static > void sort(T[] arr) {

sort(arr, 0, arr.length - 1, 16);

}

/**

* @param arr 待排序的数组

* @param left 左闭

* @param right 右闭

* @param k 当快排递归到子问题的规模 <= k 时,采用插入排序优化

* @param 泛型,待排序可比较类型

*/

public static > void sort(T[] arr, int left, int right, int k) {

// 规模小时采用插入排序

if (right - left <= k) {

insertionSort(arr, left, right);

return;

}

int p = partition(arr, left, right);

sort(arr, left, p - 1, k);

sort(arr, p + 1, right, k);

}

public static > void insertionSort(T[] arr, int l, int r) {

for (int i = l + 1; i <= r; i++) {

T cur = arr[i];

int j = i - 1;

for (; j >= 0 && cur.compareTo(arr[j]) < 0; j--) {

arr[j + 1] = arr[j];

}

arr[j + 1] = cur;

}

}

private static > int partition(T[] arr, int left, int right) {

//排序前,先让基准值和随机的一个数进行交换。这样,基准值就有随机性。

//就不至于在数组相对有序时,导致左右两边的递归规模不一致,产生最坏时间复杂度

swap(arr, left, (int) (Math.random() * (right - left + 1) + left));

T base = arr[left];

int j = left;

for (int i = left + 1; i <= right; i++) {

if (base.compareTo(arr[i]) > 0) {

j++;

swap(arr, j, i);

}

}

swap(arr, left, j);

return j;

//返回一躺排序后,基准值的下角标

}

public static void swap(Object[] arr, int i, int j) {

if (i != j) {

Object temp = arr[i];

arr[i] = arr[j];

arr[j] = temp;

}

}

private static void printArr(Object[] arr) {

for (Object o : arr) {

System.out.print(o);

System.out.print("\t");

}

System.out.println();

}

public static void main(String args[]) {

Integer[] arr = {3, 5, 1, 7, 2, 9, 8, 0, 4, 6};

printArr(arr);

//3 5 1 7 2 9 8 0 4 6

sort(arr);

printArr(arr);

//0 1 2 3 4 5 6 7 8 9

}

}

快速排序继续优化:两路快排

在最开始的普通快速排序说过,让基准值base左边的都比base小,而base右边的都大于等于base。等于base的这些会聚集到右侧(或者稍微改改大小关系就会聚集到左侧)。总之就会聚集到一边。这样在数组中重复数字很多的时候,就又会导致两边子递归规模差距悬殊的情况。这时想把等于base的那些数分派到base两边,而不是让他们聚集到一起。

(注:测试代码的时候,最好把插入排序那部分注视掉,向我下面代码中那样...不然数据量小于k=16的时候执行的是插入排序.....)

public class QuickSort {

public static > void sort(T[] arr) {

sort(arr, 0, arr.length - 1, 16);

}

/**

* @param arr 待排序的数组

* @param left 左闭

* @param right 右闭

* @param k 当快排递归到子问题的规模 <= k 时,采用插入排序优化

* @param 泛型,待排序可比较类型

*/

public static > void sort(T[] arr, int left, int right, int k) {

// 规模小时采用插入排序

// if (right - left <= k) {

// insertionSort(arr, left, right);

// return;

// }

if (left >= right) return;

int p = partition(arr, left, right);

sort(arr, left, p - 1, k);

sort(arr, p + 1, right, k);

}

public static > void insertionSort(T[] arr, int l, int r) {

for (int i = l + 1; i <= r; i++) {

T cur = arr[i];

int j = i - 1;

for (; j >= 0 && cur.compareTo(arr[j]) < 0; j--) {

arr[j + 1] = arr[j];

}

arr[j + 1] = cur;

}

}

private static > int partition(T[] arr, int left, int right) {

//排序前,先让基准值和随机的一个数进行交换。这样,基准值就有随机性。

//就不至于在数组相对有序时,导致左右两边的递归规模不一致,产生最坏时间复杂度

swap(arr, left, (int) (Math.random() * (right - left + 1) + left));

T base = arr[left];

//基准值,每次都把这个基准值抛出去,看成[left+1.....right]左闭右闭区间的排序

int i = left + 1;

//对于上一行提到的[left+1.....right]区间,i表示 [left+1......i)左闭右开区间的值都小于等于base。

int j = right;

//对于上二行提到的[left+1.....right]区间,j表示 (j......right]左开右闭区间的值都大于等于base。

while (true) {

//从左到右扫描,扫描出第一个比base大的元素,然后i停在那里。

while (i <= right && arr[i].compareTo(base) < 0) i++;

//从右到左扫描,扫描出第一个比base小的元素,然后j停在那里。

while (j >= left && arr[j].compareTo(base) > 0) j--;

if (i > j) {

//虽说是i>j,但其实都是以j=i-1为条件结束的

break;

}

swap(arr, i++, j--);

}

swap(arr, left, j);

return j;

//返回一躺排序后,基准值的下角标

}

public static void swap(Object[] arr, int i, int j) {

if (i != j) {

Object temp = arr[i];

arr[i] = arr[j];

arr[j] = temp;

}

}

private static void printArr(Object[] arr) {

for (Object o : arr) {

System.out.print(o);

System.out.print("\t");

}

System.out.println();

}

public static void main(String args[]) {

Integer[] arr = {3, 5, 1, 7, 2, 9, 8, 0, 4, 6};

printArr(arr);

//3 5 1 7 2 9 8 0 4 6

sort(arr);

printArr(arr);

//0 1 2 3 4 5 6 7 8 9

}

}

快速排序继续优化:两路快排 不用swap,用交换

上面的两路在找到大于base的值和小于base的值时,用的是swap()方法来进行交换。两数交换涉及到第三个变量temp的操作,多了读写操作。接下来用直接赋值的方法,把小于的放到右边,大于的放到左边,当i和j相遇时,那个位置就是base该放的地方。至此一趟完成。递归即可。

public class QuickSort {

public static > void sort(T[] arr) {

sort(arr, 0, arr.length - 1, 16);

}

/**

* @param arr 待排序的数组

* @param left 左闭

* @param right 右闭

* @param k 当快排递归到子问题的规模 <= k 时,采用插入排序优化

* @param 泛型,待排序可比较类型

*/

public static > void sort(T[] arr, int left, int right, int k) {

// 规模小时采用插入排序

// if (right - left <= k) {

// insertionSort(arr, left, right);

// return;

// }

if (left >= right) return;

int p = partition(arr, left, right);

sort(arr, left, p - 1, k);

sort(arr, p + 1, right, k);

}

public static > void insertionSort(T[] arr, int l, int r) {

for (int i = l + 1; i <= r; i++) {

T cur = arr[i];

int j = i - 1;

for (; j >= 0 && cur.compareTo(arr[j]) < 0; j--) {

arr[j + 1] = arr[j];

}

arr[j + 1] = cur;

}

}

private static > int partition(T[] arr, int left, int right) {

//排序前,先让基准值和随机的一个数进行交换。这样,基准值就有随机性。

//就不至于在数组相对有序时,导致左右两边的递归规模不一致,产生最坏时间复杂度

swap(arr, left, (int) (Math.random() * (right - left + 1) + left));

T base = arr[left];

//基准值,每次都把这个基准值抛出去,看成[left+1.....right]左闭右闭区间的排序

int i = left;

//对于上一行提到的[left+1.....right]区间,i表示 [left+1......i)左闭右开区间的值都小于等于base。

int j = right;

//对于上二行提到的[left+1.....right]区间,j表示 (j......right]左开右闭区间的值都大于等于base。

while (i < j) {

//从右到左扫描,扫描出第一个比base小的元素,然后j停在那里。

while (j > i && arr[j].compareTo(base) > 0) j--;

arr[i] = arr[j];

//从左到右扫描,扫描出第一个比base大的元素,然后i停在那里。

while (i < j && arr[i].compareTo(base) < 0) i++;

arr[j] = arr[i];

}

arr[j] = base;

return j;

//返回一躺排序后,基准值的下角标

}

public static void swap(Object[] arr, int i, int j) {

if (i != j) {

Object temp = arr[i];

arr[i] = arr[j];

arr[j] = temp;

}

}

private static void printArr(Object[] arr) {

for (Object o : arr) {

System.out.print(o);

System.out.print("\t");

}

System.out.println();

}

public static void main(String args[]) {

Integer[] arr = {3, 5, 1, 7, 2, 9, 8, 0, 4, 6};

printArr(arr);

//3 5 1 7 2 9 8 0 4 6

sort(arr);

printArr(arr);

//0 1 2 3 4 5 6 7 8 9

}

}

快速排序继续优化:当大量数据,且重复数多时,用三路快排

把数组分为三路,第一路都比base小,第二路都等于base,第三路都大于base。

用指针从前到后扫描,如果:

1.cur指向的数小于base,那么:交换arr[cur]和arr[i]的值,然后i++,cur++。

2.cur指向的数等于base,那么:cur++

3.cur指向的数大于base,那么:交换arr[cur]和arr[j]的值,然后j--。

当cur>j的时候说明三路都已经完成。

798050013972933a3f15b0d9c648814c.png

public class QuickSort {

public static > void sort(T[] arr) {

sort(arr, 0, arr.length - 1, 16);

}

/**

* @param arr 待排序的数组

* @param left 左闭

* @param right 右闭

* @param k 当快排递归到子问题的规模 <= k 时,采用插入排序优化

* @param 泛型,待排序可比较类型

*/

public static > void sort(T[] arr, int left, int right, int k) {

// 规模小时采用插入排序

// if (right - left <= k) {

// insertionSort(arr, left, right);

// return;

// }

if (left >= right) return;

int[] ret = partition(arr, left, right);

sort(arr, left, ret[0], k);

sort(arr, ret[1], right, k);

}

public static > void insertionSort(T[] arr, int l, int r) {

for (int i = l + 1; i <= r; i++) {

T cur = arr[i];

int j = i - 1;

for (; j >= 0 && cur.compareTo(arr[j]) < 0; j--) {

arr[j + 1] = arr[j];

}

arr[j + 1] = cur;

}

}

/**

* @param arr 待排序的数组

* @param left 待排序数组的左边界

* @param right 待排序数组的右边界

* @param 泛型

* @return

*/

private static > int[] partition(T[] arr, int left, int right) {

//排序前,先让基准值和随机的一个数进行交换。这样,基准值就有随机性。

//就不至于在数组相对有序时,导致左右两边的递归规模不一致,产生最坏时间复杂度

swap(arr, left, (int) (Math.random() * (right - left + 1) + left));

T base = arr[left];

//基准值,每次都把这个基准值抛出去,看成[left+1.....right]左闭右闭区间的排序

//三路快排分为下面这三个路(区间)

int i = left;

// left表示,[lleft...left) 左闭右开区间里的数都比base小

int j = right;

// left表示,(rright...right] 左开右闭区间里的数都比base大

int cur = i;

//用cur来遍历数组。[left...cur)左闭右开区间里的数都等于base

while (cur <= j) {

if (arr[cur].compareTo(base) == 0) {

cur++;

} else if (arr[cur].compareTo(base) < 0) {

swap(arr, cur++, i++);

} else {

swap(arr, cur, j--);

}

}

return new int[]{i - 1, j + 1};

//[i...j]都等于base,子问题就只需要解决i左边和j右边就行了

}

public static void swap(Object[] arr, int i, int j) {

if (i != j) {

Object temp = arr[i];

arr[i] = arr[j];

arr[j] = temp;

}

}

private static void printArr(Object[] arr) {

for (Object o : arr) {

System.out.print(o);

System.out.print("\t");

}

System.out.println();

}

public static void main(String args[]) {

Integer[] arr = {3, 5, 1, 7, 2, 9, 8, 0, 4, 6};

printArr(arr);

//3 5 1 7 2 9 8 0 4 6

sort(arr);

printArr(arr);

//0 1 2 3 4 5 6 7 8 9

}

}

总结

以上就是本文关于Java编程实现快速排序及优化代码详解的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值