
为了贯彻落实国家高等教育发展要求,响应科教兴国战略,把我校建设成世界一流高校,在学生之间养成良好的学术氛围,我公众号决定即日起新增设“硬核控的学术盒子”(the Academic Box of NPTCE)板块。本版块将不定时更新国内外最新的学术成果,学科学习及研究指南和学校及周边科研科创项目推广。
(前半段是我一本正经瞎编的,严肃脸)

大二年级的考研数学·第4期
「无穷级数」在数学分析中是什么样子
考研数学是大多数国内理工类专业研究生入学统一考试的笔试专业课之一,长期以来在考研初试在占有举足轻重的地位,考研数学也成了很多考研人及其他对数学有浓厚兴趣的学生非常重视的一门学科。笔者从开始接触考研数学已经有两年了,在此之间也做过一些考研真题和数学竞赛系统,对于考研数学有一些心得和经验,为了系统性的学习考研数学以及帮助一部分对考研数学有需求的同学,我们特别开放一个专栏「大学二年级的考研数学」以整理这些文章,以便大家了解和学习。
从这一篇开始,我们将正式进入考研数学的重难点章节,这一次我们先来介绍无穷级数。无穷级数是高等数学中很重要的一部分,由无穷级数理论也催生了离散系统的分析理论。在考研数学中无穷级数一般会以一道选填和一道解答的形式进行考察,题目整体来说并不难,但是无穷级数会与微分方程、数列与数列极限、不等式、中值定理等知识点交叉考察,所以对考生的综合要求也比较高。
我前面三篇推送的风格都采用一种比较固定的格式,先整理一下往年考察题型,再梳理一遍知识重点,最后从15年的数一中挑7至8道题写一写。这种风格对于线性代数、概率统计、常微分方程来说整理起来很方便,因为他们的题型相对固定,也很少出现考点交叉的情况。而到了后面高等数学篇,不同分支的知识点往往会混合出题,或者单独拎出来一个小知识点出题,前面的推送风格就不太适合。
这一篇我将会把主要的笔墨放在知识体系的梳理上,从数项级数开始,再到幂级数和三角级数,尽力地覆盖每一个主要考点,其中也会附带几道我比较喜欢的考研真题。大家可能注意到了这一篇的标题是「无穷级数」在数学分析中是什么样子,因为我想在文章中稍微扩充一些能用在考研数学中的竞赛知识,故我会在数一无穷级数考纲规定的范围内,适当补充一些数学分析里面的级数收敛法之类的东西。
我们还是来看一下这个表,我总结了15年数一真题的无穷级数解答题的主要考点

无穷级数解答题考点整理(未包含数列极限)
在解答题中考察频率最高的还是幂级数的和函数,其次是幂级数收敛域;关于数项级数的审敛法在解答题中考察较少,但是在选择题中考察的频率比较高,所以还是要认真对待;另外Fourier级数在15年数一试卷中,只有2008年的解答题第一问和2017年的选择题中有过考察,考察的频率较低,相对难度也较低。另外发现有三年的解答题没有考察无穷级数,而是考察的数列极限,还有一年的题目是无穷级数化作定积分求极限,这些我们在第8期再做补充。
那我们开始这一篇吧
01


接下来我们开始对数项级数审敛法的讲述,首先是正项级数,这种级数是各项都是由正数组成的数项级数。

我们在很多情况下会用比较审敛法的推论去解决实际问题。也是因为比较审敛法的推论,在数列极限中的等价无穷小理论就可以在无穷级数中应用,下面我们看一个比较简单的例题去理解这个审敛法。




相比来说比值审敛法,尤其是比值审敛法的极限形式在处理一般问题时要好用的多,但是比值审敛法也有很大的局限性,就是出现III的情况,这时无法判断级数是否收敛,这样我们就必须要换一种审敛法去重新判断。



根值审敛法和比值审敛法的形式和判断依据非常接近,能应用根值审敛法的级数往往是含有n次方项的级数。同样的根值审敛法也存在着失效的情况,所以我们就需要有其他的审敛法。




Raabe审敛法是为了弥补比值审敛法的局限性而补充的,这时很多比值审敛法不能适用的级数也可以判断敛散性,当然其自身也具有局限性,不过一般的级数前面几种审敛法就能找到适合的判别法,一般不会存在无法判断的情况。
前面提到的级数都是正项级数,那对于有正有负的一般项级数我们有一些更好用的审敛法:

Leibniz审敛法是最常用的交错级数审敛法,它的判断条件非常简单,一个是交错级数,一个是加绝对值以后数列单调递减,再一个就是级数极限为0。注意前面提到过,级数收敛的必要条件是级数极限为0,在交错级数中也依然如此,并非是充要条件或者充分条件。


接下来的两种审敛法是对于乘积形式的级数的审敛法,也可以用在部分题目中。



02
前面就是所有的关系数项级数审敛法的主要内容,接下来我们开始幂级数部分。幂级数永远是无穷级数部分的重点,幂级数的和函数与函数的Taylor级数展开是无穷级数解答题考察的重点,也是后面很多专业课中会用到的一部分知识点,比如在复变函数与积分变换中会有洛朗级数的收敛域与洛朗级数展开的内容,这就是承接的高等数学中的幂级数的相关概念,所以希望大家能在平时学习或备考阶段多加练习。

这是最简单的一种函数项级数。对于幂级数我们有三个考察重点:幂级数的收敛域、幂级数的和函数及函数的幂级数(Taylor级数)展开。求幂级数收敛域是研究幂级数的基础,也是承接着上一节的数项级数敛散性内容。这里我们先介绍一个重要定理

Abel定理和前面数项级数收敛的充要条件一样,属于众所周知但是通常不会直接应用的一类定理。在解幂级数的收敛域问题中如果所学的审敛法和判别法都失效的时候,那么可以考虑从最基本的定理入手。所以在备考过程中每一个基本定理都要尽可能的理解和掌握。后面介绍几种基本的收敛半径求法:


以上两种判别法可以解决大多数的题目收敛半径问题,在求解完收敛半径后我们还需要去判断边界点的敛散性,一般需要把端点的值带入然后用前面的数项级数审敛法去单独加以判断。而在极个别的题目中,我们会遇到一类级数,他们的数列中含有至少两个收敛于不同值的子列,这一类级数无法用根值审敛法和分式审敛法求解收敛半径,对于这种级数,我们可以采用下面的定理去求解,也可以回到Abel定理去求解。


03
接下来来到了最重点的函数的 Taylor 级数展开与幂级数求和部分,这一部分的基础概念不多,但是需要记忆一些基本的函数的Taylor 级数展开式,并且要求能正向逆向熟练运用。这里用于讲解概念的篇幅较少,我将主要部分留在考研真题举例上。

逐项求导和逐项积分公式需要和下面的常见函数Taylor展开配合使用,用于解决一些带有常见初等函数的导数或积分性质的情况。同时要注意一点在有些级数使用逐项求导公式时会出现级数第一项变为0的情况,这时一般会将级数的起始项正向移动一位,需要同学们注意判断。









04
最后我们来讲最后一个知识点,函数的 Fourier 级数展开,这一部分是工科数学积分变换中 Fourier 变换的基础,所以在专业课的学习中还是很重要的。不过在考研数学中 Fourier 级数的考察频率和考察难度都是非常低的,所以不必过多的去准备,这里我主要整理了 Fourier 级数的基本展开公式及收敛条件。



在2008年的解答题中考察了一次余弦级数的展开,也是15年中唯一一道的Fourier级数解答题。


最后再补充一下Fourier级数的收敛定理。


·END·
敬请期待可能会有的第5期
「高维积分」用向量看曲线曲面积分

彩色的封面图!

byebye我去补觉了~ 点个在看嘤~