LL1分析构造法_几何构造分析的新型方法——位移模态法

616b38b67f383280ad173b442d9bbf62.png

小编最近在很多群看到研友们讨论上图体系的几何构成,近90%的人认为它是几何瞬变体系,包括一些习题乃至考研真题都把它作为瞬变体系。其实,很多都是以讹传讹。今天,笔者要为那10%认为是常变体系的朋友“伸冤”!

为了非常透彻地讲解,笔者需先提出一引理,即文章标题——位移模态法

引理:

  1. 如果一个体系没有位移模态,则该体系一定是几何不变的;
  2. 如果一个体系只有一种独立的位移模态:1)在此位移模态下只能发生微量的位移,则该体系是几何瞬变的;2)在此位移模态下能发生有限量的位移,则该体系是几何常变的;
  3. 如果一个体系存在两种及以上独立的位移模态,则该体系一定是几何常变的。

此处的位移模态指体系的自由位移(变形)状态。

先举几个例子让大家熟悉下该引理,然后予以证明。

eg1:

38b44654d80d75f04326c6e91ffa2894.png
模态一

该体系显然只有一种独立的位移模态,且只能发生微量位移,因此为瞬变体系。

eg2[1]

34414fa8b28eca47de71e68f260bf287.png
模态一 模态二 模态三

该体系有两种独立的位移模态,其中模态三看作是模态一和模态二的线性叠加。因此为常变体系。

eg3[2]

2ed2015b097cdfc56e477a9357249a51.png
(a) (b)

如图(a),该体系只有一种独立的位移模态,但

可以取有限量。读者可以自行根据几何知识计算出:

此时只需

即可,即
为有限量。

注意:若按图(b)画变形位移,则

只能是无限小量,此时

现在大家已经熟悉了该引理的内容,下面将进行证明。


证明:

引理1是显而易见的,这里主要证明引理2和引理3。引理2和引理3主要是区别瞬变和常变体系。我们用瞬变体系与常变体系的定义作为公理。

公理:如果一个体系发生微量位移后,成为几何不变体系(即结构),该体系就是瞬变体系;否则为常变体系。

基于以上公理我们执行:假定一体系发生微量位移,在位移(变形)后若该体系能承担任意荷载,此时便为结构,从而可知原体系为瞬变体系;若不能承担某一种荷载,此时仍然是几何可变的,从而可知原体系为常变体系。

对于引理2:此时只有一种独立的位移模态,1)当沿该位移模态只能发生微量位移时,显然就是瞬变体系;2)当沿该位移模态发生微量位移后,还能继续发生位移(有限量),显然就是常变体系。

对于引理3:此时有多种独立的位移模态。让它按照某一种模态发生微量位移,但荷载作用在未发生位移的模态上,因为这种模态尚未发生位移,它一定不能承担某种荷载(否则它就不是位移模态了)。所以说此时体系发生微量位移后仍然不能成为结构,故为常变体系。

我们仍然以上面三个例子具体化:

eg1:

6350a8b9dd3d151f2258b2146ae4107a.png

在发生微量位移后便成为静定结构,可以承担任意荷载F,所以是瞬变体系。

eg2:

d6b617acd83bb956e98ce4704c023f1c.png

在按模态一发生微量位移后,荷载作用在模态二上,显然无法承受此时竖向荷载F,故为常变体系。

eg3:

0728da7b9ab476a678793c940f7b5eec.png

让支座B发生微量位移,为计算方便按(b)图绘制变形图,设A、B支座反力分别为X、Y,整体对G点应用

(1)

再对左半部脱离体应用

(2)

方程(1)与方程(2)相悖,说明该体系在此状态下不能承担图示F,仍然几何可变。从而可知原体系为常变体系。

在证明的最后,我们要声明两点:

  1. 能发生有限量位移只是常变体系的充分但非必要条件,这是目前很多教材对常变体系定义不完善的地方。

1e2651a5dba0fed37b96154b47d97a09.png

对于这种两个完全独立的瞬变体系合在一起,为了与我们的引理一致,我们规定它是常变体系。


基于以上引理——位移模态法,我们现在回到最初的那个体系上来。

616b38b67f383280ad173b442d9bbf62.png

29967b76852e15cdc7614c113c344c74.png
模态一 模态二

它有两种独立的位移模态,故为常变体系

有的朋友对这两种模态中BDE部分的变形表示质疑,认为它们是相矛盾的,并且认为只存在其中一种位移模态,无外乎两种观点:

  1. 认为模态一是对的,而模态二BDE部分投影长度变了;
  2. 认为模态二是对的,而模态一BDE部分杆件变成了折线,从而变长了。

其实不然。(这里投影长度指变形后的杆件向其初始位置轴向方向投影的长度。)

对于模态一,D点只能向左(右)发生微量位移,图中那点距离是微量的,与eg1的变形同理;

对于模态二:D点可以向左(右)发生有限量位移而长度仍保持为原长(见下图),当然在这个图里面受B点只能向下发生微量位移束缚,D点也就只能发生微量位移。(在绘制此图时最好把D点与D'点画在同一水平线上。如果D点可以发生有限量位移,那么就不需在同一水平线上了。)

aac608f89b6d7f9cd514f70cdca3b586.png
杆件发生有限量位移时变形图

这两种模态发生的机理不同,当然它们都是存在的,也是独立的,不可能只存在一种模态,也就不可能是瞬变体系。


用位移模态概念来判断几何构造,是笔者提出的一种很实用的方法,特别是在用零载法判断出几何可变时可进一步判断瞬变和常变。下面用两道例子来说明:

eg4[3]

8b7b3bc5da249afecc2483287db97969.png

为了更方便的绘图,我们对体系先进行等效变换。

658cbc155b0308bb2e9c8ab2e3817f93.png
(a) (b)

图(a)是虚铰实化,图(b)是去除二元体。对于图(b),它存在以下两种独立的位移模态(其中模态三看作是模态一和模态二的线性叠加):

c67730bcfd7def1e31f4679125a7b3a6.png
模态一 模态二 模态三

易知其为常变体系。

注意到:本题在朱老师第二版教材上答案是瞬变体系,第三版教材上答案是可变体系。很明显他们意识到了这一点,但没法说明为什么是常变,故定为可变体系。(此处“没法”并非指没有能力,而是指没有契机。)

eg5:

497f6ea07aae05a5a8da2fd0655f39e8.png

本题为笔者曾经命制的一道题,也是常变体系,读者可以自己尝试一下。(注:右边为一附属静定结构,不影响整个体系的几何构成,可将其去掉。)


其实,这种方法的背后是一个更重要的结论:瞬变体系上叠加一瞬变体系,为常变体系!

1ce9c5292b59cbf8129c1cfe3bc493fe.png
(a) (b) (c)

图(a)为瞬变加瞬变,等于常变;图(b)为瞬变加静定,等于瞬变;图(c)没有任何叠加。


写到这里,就已经接近尾声了。此问题最初是袁飞同学问及小编,当时笔者正值毕业旅行,不假思索的就答成了瞬变体系。袁飞同学对我的答案不断提出质疑、反驳,当我回到学校后重新思考这道题时,才恍然大悟,随即发现了这种位移模态法来分析几何构造。可以说这种方法是狗哥(笔者)与袁飞同学共同的努力下创造的。

若读者参阅至此狗哥必须送上诚挚感谢,这么多的文字、图片读起来确实费些心思、脑力。狗哥为了详述这个问题,选择知乎这一平台,专门重新申请了个账号。若能够给大家带来一定帮助,受到大家认可,该账号以后会继续发表类似的文章。最后,感谢你们所有,欢迎质疑、批评、指正!

参考

  1. ^此题源自单建老师编著的《趣味结构力学》
  2. ^此题源自于玲玲老师主编的《结构力学》第二版
  3. ^此题源自朱慈勉老师主编的《结构力学》第3版
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值