因子分析累计方差贡献率要在多少_因子分析案例及操作解析

通过因子分析探究一个省的科技创新能力,发现前3个公共因子的方差贡献率为93.924%,揭示了科技投入与产出(因子1)、地区经济发展与财政科技投入(因子2)及高科技产业发展(因子3)是关键影响因素。北京受影响最大,山东最低。分析基于x1~x15经济指标的数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分析一个省的科技创新能力受哪些潜在因素的影响?(本数据来源于网络收集,x1~x15代表各省市相关经济指标)

第一步:数据输入(如下图)

0e44b26866870e8e1f363086aa231a2e.png

第二步:操作步骤:分析——降维——因子分析(F)。

c4a23b6773a7fc6019ad3f6757376c0f.png

得出下图:(1)因子分析将x1~x15选入变量,然后点击描述。

cd1709efc7af292515eb817cce9de8bb.png

进入描述统计,勾选原始分析结果(I),选择相关矩阵中的系数、行列式。

84fea13e1a6c6c0b1e63f3dce4bca396.png

eed981d5090a32c7ba9e9a49a53782a7.png

按照下面操作步骤

84fd9bd4898f0a4c42196d6c7ec65115.png

549a9ff8eb68b85951649e72aaf1a870.png

179132b3832cd49d550ba499c81dbec0.png

此外的其他选项不变,得出最后结论。

第三部:得出结果。如下所示:

1f4543ae05d832eafa329704de95ff89.png

222782c81123f49807c18597933b66f1.png

结果显示及分析:可以看出前3个特征值>1,同时这3个公共因子的方差贡献率占93.924%,说明提取这3个公共因子可以解释原变量的绝大部分信息。

4d27c806f9b551fe21fdb637fc00629b.png

底部表明使用的主成分分析法,3个主成分被抽取出来。

f4b9eea4a2870464461e9810e35ec9a5.png

7e40d524142dfa04aabbd3a9b66d041e.png

旋转后的因子载荷矩阵

是按照前面设定的“方差极大法”对因子载荷矩阵旋转的结果。在旋转前的的矩阵中,因子变量在许多变量上均有较高的载荷,从旋转后的因子可以看出,因子1在1、3、6、7、12、13、14上有较大载荷,反映科技投入与产出情况,可以命名为创新水平因子:因子2在指标5、8、15上较大载荷,反映地区经济发展及财政科技投入水平,可以命名为创新因子;因子3在指标9和10上有较大载荷,可以命民为高科技产业发展因子。

45595f6733953c1cf56c622f352fa961.png

表明因子提取方法是主成分分析,旋转的方法是方差极大法。

297f1d87b3007fc09e103c39cae21ef6.png

得出结论:

北京受x1-x15因素的影响排在第一位。山东排在最后一位。

在主页,回复20190304即可获得数据哦~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值