[LeetCode] 368. Largest Divisible Subset

[LeetCode] 368. Largest Divisible Subset

题目描述

Given a set of distinct positive integers, find the largest subset such that every pair (Si, Sj) of elements in this subset satisfies: Si % Sj = 0 or Sj % Si = 0.

If there are multiple solutions, return any subset is fine.

Example 1:

nums: [1,2,3]

Result: [1,2] (of course, [1,3] will also be ok)
Example 2:

nums: [1,2,4,8]

Result: [1,2,4,8]

分析

状态转移方程为dp[vec[i]] = max(dp[vec[i]], dp[vec[j]] + 1) (i = 1 - n, j = i - n, vec[j] mod vec[i] = 0, vec经过排序)。
先给数组排序,这样我们每次就只要看后面的数字能否整除前面的数字。定义一个动态数组dp,其中dp[i]表示到数字nums[i]位置最大可整除的子集合的长度,还需要一个一维数组parent,来保存上一个能整除的数字的位置,两个整型变量mx和mx_idx分别表示最大子集合的长度和起始数字的位置,我们可以从后往前遍历数组,对于某个数字再遍历到末尾,在这个过程中,如果nums[j]能整除nums[i], 且dp[i] < dp[j] + 1的话,更新dp[i]和parent[i],如果dp[i]大于mx了,还要更新mx和mx_idx,最后循环结束后,我们来填res数字,根据parent数组来找到每一个数字.

class Solution {
public:
    vector<int> largestDivisibleSubset(vector<int>& nums) {
        sort(nums.begin(), nums.end());
        vector<int> dp(nums.size(), 0), parent(nums.size(), 0), res;
        int mx = 0, mx_idx = 0;
        for (int i = nums.size() - 1; i >= 0; --i) {
            for (int j = i; j < nums.size(); ++j) {
                if (nums[j] % nums[i] == 0 && dp[i] < dp[j] + 1) {
                    dp[i] = dp[j] + 1;
                    parent[i] = j;
                    if (mx < dp[i]) {
                        mx = dp[i];
                        mx_idx = i;
                    }
                }
            }
        }
        for (int i = 0; i < mx; ++i) {
            res.push_back(nums[mx_idx]);
            mx_idx = parent[mx_idx];
        }
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值