
在交通安防中,车型识别是一个重要的技术点,车型识别主要包括车辆检测、型号识别、颜色识别,基于视频的车型识别,还包括跟踪算法的设计。我们在19年开源了一套车型识别模型HyperVID:
https://github.com/zeusees/HyperVIDgithub.com2020年7月对该模型进行了进一步更新,目前支持大陆超过4000种车型及年款。感兴趣的技术人员可以关注一下。下面我们将其中涉及的技术进行拆解。
1.数据
我们知道,基于深度学习的识别算法,强烈依赖于数据的规模和质量,首先需要准备大量的车型数据,目前公开的车型数据集主要包括:
1)BIT-Vehicle Dataset(目前网站已不能访问,需要下载可以自行百度查找下载链接)
2)MIT Cars Dataset(https://ai.stanford.edu/~jkrause/cars/car_dataset.html)
3)The CompCars dataset(CompCars Dataset)
单纯利用公开的数据,很难获得较高的准确率,一方面开源的数据集样本数量不足,另外样本的角度、场景不够丰富,这些都制约模型的准确率。我们的实习生也下载了一些数据,大家可以在仓库中下载。
2.车辆检测