最小生成树唯一吗_最小生成树 克鲁斯卡尔(Kruskal)算法

克鲁斯卡尔算法是一种寻找图的最小生成树的方法,它首先将边按权重从小到大排序,然后逐步添加不会形成环路的边。在判断环路时,利用并查集数据结构。该算法的时间复杂度为O(n log n),适用于无向图。通过图解和代码演示了如何使用克鲁斯卡尔算法找到最小生成树。
摘要由CSDN通过智能技术生成

d1a6c9920c38719797ca3b74af955cad.png

克鲁斯卡尔(Kruskal)算法

克鲁斯卡尔(Kruskal)算法 是求最小生成树的 了解最小生成树

普利姆(Prime)算法是以 为基础,挑选与 已有点 相连的最小边。

克鲁斯卡尔(Kruskal)算法是以 为基础,先将边从小到大排列,从小到大的添加不构成「环路」的边。

判断「环路」使用的是 并查集 的数据结构 学习并查集

1.要点

  • 核心:先将边从小到大排列,从小到大的添加不构成「环路」的边
  • 判断「环路」:使用 并查集 的数据结构 学习并查集
  • 时间复杂度:O(n log n) (这是由排序方式实现的)

2.图解

求下面图的最小生成树

13afbd60d2614b2184bbad5ca8d6e06b.png

首先将边从小到大排列 如下表所示。

| 边 | from | to | weight | | ---------- | ---- | ---- | ------ | | edges[0] | B | C | 2 | | edges[1] | A | C | 3 | | edges[2] | A | B | 3 | | edges[3] | B | D | 4 | | edges[4] | C | D | 6 | | edges[5] | A | D | 7 |

选取最小的边 BC,

  1. 通过 并查集 find() 找到 root 根节点,判断 B、C 不为同一颗子树
  2. 通过 并查集 union() 将 B、C 合并为一颗树

7baaccf820cf38ad2622cac854ec97de.png

选取第二小的边 AC,

  1. 通过 并查集 find() 找到 root 根节点,判断 A、C 不为同一颗子树
  2. 通过 并查集 union() 将 A、{'B'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值