几何画板200个经典课件_立体画板2.15教程(4)——课件示例1

教程太长,系统限制不能一次发完成,要分成多段发表.

用户可在以下位置下载全部软件、教程和课件:

www.jianpinghuaban.com

立体画板教程 >课件示例1

立体画板教程 > 课件示例1 >正方体与球

该课件的示例文件为:8球与正方体.chb,作法如下:

1 做坐标平面 ,

2 选择其中一个坐标平面上的对角线上的两个点,执行“构造”“线段”菜单命令,作一条线段。

3 选择该线段,执行“构造”“线段的中点”命令,如下图所示,,这个中点记为点O。

ca9472981a3bbfd0d7be3daba12eb994.png

4 点击工具条上的画线段按钮,然后在画板空白处拖动,则画出一条线段,

3a6d1a60016041d6394784ae6f8e41eb.png

5 点击工具条上的选择按钮,然后选择这条线段,执行“构造”“线段上的点”命令,则得到线段上的点,如上图所示。依次选择这三个点,执行“显示”“标签。。。”命令,得到下图所示的对话框,点击确定,则得到三个点的标签,如下图

515b77bf398afdd91ea82adba5bce468.png

6 依次选择点A,C,选择“变换”“标记向量”命令,

7 选择点O,执行“变换”“平移””命令,得到一个平移点,再选择点O和这个平移点,执行“构造”“球体”命令,得到球体,如图所示

在选择一个点时,若该点被一个平面所挡,可先给这个平面做一个显示按钮,隐藏该平面后再选择这个点,

3703edafd165b666ff45d7b28ee0497f.png

8 移动点C的位置,则球的大小可发生改变

9 选择点C,点击工具条上的“动画”按钮,则得到点C 的动画按钮。点击该按钮,点C的位置开始移动,球的大小自动改变。选择该动画对象,执行“编辑”,“属性”菜单命令,把动画的方向设置为“双向”。

e6a80bb6e3325611cbc0bbd1d02b6f1a.png

10 还可为坐标平面做一个显示按钮,隐藏某个坐标平面,如下图。

0d217bb91451debc28ac1b7696fced88.png

11 做正方体。执行“绘图”,“绘制标准正方体”菜单命令,则得到一个标准位置和大小的正方体如下图所示,从图中可清楚得看到正方体与球体的关系。若球体变小,可隐藏该正方体。

8c5eba1bc022fca007c390df091bb816.png
  • 立体画板教程 > 课件示例1 >二面角

1 做一个圆,并做圆上的一个点,如下图,选择如图中的三个点对象 执行“构造”“三角形面”命令得到如图所示的三角形面对象,

8d12d090896dbabdab3ff44b465706b2.png

再做一个点D,选择点D和前面所做的面对象,执行“构造”“面的垂线”,选择面的垂线,执行“构造”“线上的点”命令,得到线上的点E,再同样做点F。如上图。

2 再做一个圆上的点P,选择这个点,点击工具按钮“动画”,得到圆上点的动画按钮。

704d0f8fc6989c5b398e2d2a1d1a53d7.png

3 依次选择点M,E执行“变换”“标记向量命令”,选择点A,P执行“变换”“平移”命令,得到两个平移点。

依次选择点M,F执行“变换”“标记向量命令”,选择点A,P执行“变换”“平移”命令,再得到两个平移点。选择这4个点,执行“显示”“标签…”命令,在得到的对象框中输入A1,则得到4 个点的标签,如上图。

4 依次选择点A1,A3,F,执行“构造”“四边形面”命令。依次选择点A2,A4,F,执行“构造”“四边形面”命令。得到如图所示的二面角。

82521a2a7e1e8cf06aa36657a3061c12.png
5ccc7b6e31591794db7f6b9b601ea71d.png
335a6902ebeec9ff67a21cc091e368da.png

5 点动画按钮,这个二面角可旋转变化。

6 改变点M,A,P,D,E,F的位置,则二面角可发生变形。

7 选择二面角的面,执行“设置”“几何体的类型”命令,也可直接点击有关的按钮,几何体类型也可发生变化,如上图。

8 也可在键盘上按键:J,M,K,I,N,B,以及方向健进行平移,旋转,缩放。

  • 立体画板教程 > 课件示例1 >长方体的展开

1 执行“画图2”,“绘制坐标系”菜单命令,执行“设置”,“显示与隐藏坐标系”命令,则得到用户可进行操作的坐标系,并隐藏参考坐标系,如下图所示。

2351a8cc7cbaa70362033dd60b3b610b.png
9985fe8fb831818b68f3993631572db4.png

2 点击左上角的做点工具按钮,然后在三个坐标轴上点击,则得到三个坐标轴上的点。也可先选择坐标轴,然后执行“构造”,“线上的点”,也可做出这三个点。分别选择这三个点,执行“显示”,“标签…….”菜单命令,把这三个点的标签分别设置为“长”,“宽”,“高”,如上图。

16.3.3 做一个自由点,标签设置为“顶点”,选择点A1和“顶点”执行“变换”,“标记向量”菜单命令,再选择点“长”,“宽”,“高”,执行“变换”,“平移”命令菜单,则得到平移对象,分别选择这三个点,执行“显示”,“标签……”菜单命令,在标签栏键入“顶点1”,则三个点的标签分别被设置为“顶点2”, “顶点3”, “顶点4”,如下图。

4144757d1f66477e361c16ee8643f946.png
14b954e5896f2f57854d38fcc06e3377.png

再设置“顶点”到“顶点3”的向量,对“顶点2”进行平移,得的点标签设置为“顶点5”。

再设置“顶点”到“顶点4”的向量,对“顶点2”,“顶点5”,“顶点3”进行平移,得的点标签设置为“顶点6”,“顶点7”,“顶点8”。这时得到了长方体的八个顶点。如下图。

77bff8018be5ec760d834a8ce83305e6.png

4 执行“数据”,“新建参数”菜单命令,新建一个参数t,数值设置为60.

选择这个参数,点击工具按钮“动画”,得到一个对话框,如下图,把范围设置为0到90,方向设置为双向。标签设置为“展开与合并”。选择参数t,执行“变换”,“标记角”菜单命令,把这个参数设置为旋转变换的角。

18a9e45499e2b296db6d6aae75d08544.png

5 选择顶点4和顶点6(注意次序),执行“构造”,“线段”菜单命令,得到线段,选择该线段,执行“变换”,“标记轴”菜单命令,选择顶点7和顶点8,执行“变换”,“旋转”命令,得到两个旋转点,标签设置为P,Q.

上面的标记角也可用下面的方法。选择顶点4和顶点6,执行“变换”,“标记轴”菜单命令。

6 再选择“顶点”和“顶点2”,执行“构造”,“线段”命令,选择该线段,执行“变换”,“标记轴”菜单命令,选择点P,Q和顶点4,顶点6,执行“变换”,“旋转”菜单命令,得到4个旋转点。标签分别设置为P1,P2,P3,P4.

在上面的过程中不能选择到顶点4和顶点6,可先给顶点4到顶点6线段设置一个显示按钮,隐藏为条线段。

选择顶点和顶点2,P2,执行“构造”,“平行四边形面”命令,得到一个面对象。同样方法做平行四边形面P1P2P3P4。

7 再分别以顶点2和5的线段为轴,顶点5和3的线段为轴,顶点3和顶点的线段为轴,做出另三个面的展开图。

1ed09f223e20f3e9edf2ac13eb4d1374.png
851b6f37e3b61a117a55472a15805bb6.png
5cd1a4cd8dfa5fe9ce3b1d2b2c9ba58a.png

然后可隐藏无关的点,把一些点的大小设置为比较小。

8 做一个自由点,标签设置为R,标记顶点到点R4 向量,选择长方体的六的面,执行“变换”,“平移”菜单命令,选择六个平移的面,点击体类型按钮,把其体类型设置为“线框2”。这样就得到两个展开图,一个是实心体的,一个是线框体的。如下图。

5cd1a4cd8dfa5fe9ce3b1d2b2c9ba58a.png

这时移动点“长”,“高”,“宽”,“顶点”,R等,可改变立方体的大小和位置。

9 展开角的大小还可这样设置,选择点A1,A2,构造线段,在线段上做一个点,再依次选择点A1,线段上点,A2,执行“度量”,“比”命令,得到一个度量参数,标签设置为t2,执行“数据”,“计算”菜单命令,做计算t2*90,把计算得到的参数标记为旋转角。这样移动线段上的点,就可对长方体进行展开与合并。

  • 立体画板教程 > 课件示例1 >通风塔

做法待续,课件效果如下图所示。(课件在文件:通风塔.chb)

88cf4d934abfad19e19db27bb35567ab.png
460bb33b6851e836b5c4a8cdf999d81d.png

改变上下底半径和高度,可变形为花篮或者纸篓。(见文件:花篮.chb)如上图。

再变形,或变为飓风。(文件:飓风.chb)

9cbc9bc6bfaebaf2806efc183a1905d8.png
  • 立体画板教程 > 课件示例1 >几个组合体

1 课本21页问题(有关三视图)

人民教育出版社新课程标准数学教材必修2第21页的问题:如下图已知几何体的三视图,想象对应的几何体的结构特征,并画出它的直观图。

(所在文件:组合体1.chb)

3af17b7873e2360f30a428c4acb99ca2.png
75b6c9ef73c072662a04f64f4a65be5e.png

2人民教育出版社新课程标 准数学教材必修2第19页的问题:如下图是一个奖杯的三视图,你能想象出它的几何结构特征,并画出它的直观图吗?

(见文件:组合体2.chb)

41689127d12df98c1502d210e2833cb5.png
e73dda489f60b0b2d692de3a0b166402.png

3(所在文件为:组合体3.chb)

f88dd48f9640f69c7611b7350b872a32.png
141f34ebb57d226408ed1a127cdea159.png
  • 立体画板教程 > 课件示例1 >一道高考题

09宁夏题:2009年高考宁夏海南试卷题:如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=

,则下列结论中错误的是

(A)

(B) EF平行于 平面ABCD (C) 三棱锥A-BEF的体积为定值 (D) 异面直线AE,BF所成的角为定值。(所在文件:高考题1.chb)

5cba39d3ecba2fb808a5a261261499e7.png
  • 立体画板教程 > 课件示例1 >棱锥棱台棱柱的结构特征

作法待续:

cd8c93b1480daf942d8173677c698c17.png
971d66aea9d9dd5b62cb7ff074178b4e.png
239a4e0391984af39d18537dc23c0433.png
  • 立体画板教程 > 课件示例1 >杠铃

做法待续:(插图所在文件:杠铃.chb)

a576a271d0b3bc273d081df4c4b94346.png
  • 立体画板教程 > 课件示例1 >正方体的三视图

做法待续:(插图所在文件:1立方体的三视图.chb)

e8e04cb0acafa99f44df6dcfa1e000db.png

点击按钮“长方体的控制点”,可显示出长方体的6个控制点,移动这6点的位置可以改变长方体的形状。点击按钮“投影1”等,可演示投影过程。

用同样的方法你可做出任意几何体的三视图。

还可以旋转三个投影图,把他们旋转到同一个平面上,这更易于学生的理解。

  • 立体画板教程 > 课件示例1 >认识常见的几何体

做法待续:(插图所在文件:2认识常见的几何体2页.chb)这是课本上第2页的课件

354569838477c65ce7773db761c6f3d9.png
  • 立体画板教程 > 课件示例1 >中心投影与平行投影

做法待续:(插图所在文件:9中心投影.chb)

0d04172685b3c57a32ee7a7130ba03ec.png
  • 立体画板教程 > 课件示例1 >简单组合体的结构特征

做法待续:(插图所在文件:10简单组合体的结构特征(6页).chb)这是课本上第6页的课件

44c6cdfe09badfd0b9f2071c64f57707.png
  • 立体画板教程 > 课件示例1 >人教版课本问题

必修2课本问题

画出下图中L围绕l旋转一周形成的空间几何体(插图所在文件:13课本35页2题.chb)

213db007885d16b648a5da795ca2cc92.png

执行“绘图”、“绘制坐标系”命令,绘制坐标系。在OX轴上做点A,B。再在空间任意做一个自由点C,选择点O,C,执行“变换”,“标记向量”命令,再选择点A,Z,B,执行“变换”,“平移”菜单命令,则得到三个平移点,如下图。

307189f29a2745dce9bf3ab20b5b4ec7.png
98893e5e4fa2891ba9b008b714e80ed8.png

依次选择点C,D,E,执行“构造”,“圆”菜单命令,得到一个圆。选择点F和Z轴,执行“构造”,“平行线”命令,得到一条平行线。移动点A和B,则可改变这个圆的大小和平行线的位置。

选择这个圆,执行“构造”,“圆上点”命令,则到一个圆上的自由点,标签设置为G,再依次选择点D,E,G,执行“构造”,“三点弧”命令,得到一个三点弧对象。移动点G的位置,与点D重合。则三点弧变成一个圆。

之所以要这样做是因为画板目前没有做圆的旋转体功能。

0a205b521fd2e79e0bf0babfcd7a00f3.png
8219f434462af8fabd1e4526de9c7a0f.png

再新建一个参数,并为参数做一个动画按钮。依次选择选择圆弧,平行线,参数,执行“构造”,“旋转体”,则得到如图所示的旋转体。改变几何体的属性为不封闭,增加纬密度,得到下图,点击动画按钮,则可得到不同旋转度数的旋转体。

a0333fd792634c569edb4af5322818b0.png
8695521c1ff17601bcf96a13499e7f16.png

改变平行线的位置,得可得到不同类型的几何体,如下图

2075a41dbd82a14363559d7f4b3076e4.png
b18a4b1dcb21bc7784a48ef188aeed9b.png
bc7182a7056689040890d60b626f092d.png

同样方法做出另外的几何体,如下图所示。

fa2fd06b7612d784c260d0209ba8a5e2.png
  • 立体画板教程 > 课件示例1 >太阳与地球

做法待续:(插图所在文件:15太阳与地琺.chb)

7028a917dae5d153e8ebae1740075ffc.png
  • 立体画板教程 > 课件示例1 >正四面体的展开

做图基本步骤:1 做正三角形,2 做各个边中点和中位线,3 建立一个自由参数,标记该参数为角,4 标记各中位线为旋转轴,旋转顶点,5做出旋转三角形,6 为参数制作动画按钮,动画范围是0-109.

c88f7f299dde44f17c03d37a65a72d91.png
  • 立体画板教程 > 课件示例1 >波涛

图形所在文件:16线的轨迹.chb

做法同做线段的轨迹,在6.4做线段轨迹的基础上,新建一个参数fai,把计算参数:400*sin(1000*t)改为:400*sin(1000*t+fai),并为参数设置一个动画按钮,点击这个按钮则得到波涛的动画。

bbce7441a60af837f9c19ea1bc45b1f5.png

立体画板 陈剑平

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值