前言
本章的内容十分丰富,可分为四大类:显著性检验(7.1,7.2,7.3)、似然比检验(7.4)、分布拟合检验(7.4)、非参数检验(7.5,7.6),每一类又有若干种不同的检验方法。本文将重点讲解上述四类检验的基本概念、基本原理,不会详细讲解具体的检验方法。原理弄懂了,具体的检验方法可以参考书中的套路。
一、显著性检验及其基本概念
本节对应书中的7.1节,我按照自己的理解重写了一遍。当我第一次阅读本章的时候,很快就碰壁了(读到“势函数”的时候)。书中关于显著性水平、检验p值的定义也比较抽象,为此我增加了一些描述性的文字,尽量把这些概念、定义解释清楚。最后才对“势函数”进行研究。我把书中遇到的新概念分为以下三类:
(1)参数类(或者称“假设类”)
原假设:
对立假设:
所谓“假设检验”是在部分总体参数未知的情况下,对未知参数进行猜测(提出假设),然后利用抽样结果(证据)对假设进行验证,并作出“接受”或“拒绝”假设的判断。
因此“假设”(名词)是针对未知参数的猜测,它描述了未知参数在参数空间
它具有以下特点:
- 以最常见的情况作为原假设。例如:女士品茶,大部分人不具备区分MT,TM的能力,因此原假设为“该女士无此鉴别能力”;生产合金,设计值不低于110,因此一般情况下合金强度不低于设计值,原假设为
。
- 对立假设分为3种情况:
(2)样本类
检验统计量:由样本观测值组成,用于判断原假设是否成立。它是我们作出检验判断的证据、依据。
检验统计量所在样本空间可以划分为两个不相交的部分:
拒绝域
接受域
(3)概率类
“假设”位于参数空间,“证据”位于样本空间,参数与样本是通过总体分布联系的。因此从“证据”推断“假设”是否成立,不是一个简单的判断题,而是一个概率计算问题。以“假设”为前提条件,出现目前抽样结果的概率是多少呢?我们将根据概率计算的结果,决定拒绝或者接受原假设。
显著性水平
- 第一类错误:当