概率论与数理统计茆诗松pdf第三版_茆诗松概率论与数理统计(第七章)

本文深入讲解概率论与数理统计中的显著性检验、似然比检验和分布拟合检验。重点阐述显著性检验的基本概念,包括原假设、对立假设、检验统计量、显著性水平和p值。同时介绍似然比检验的原理和应用,以及非参数检验中的拟合优度检验。通过对这些概念的理解,帮助读者更好地掌握统计推断的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

本章的内容十分丰富,可分为四大类:显著性检验(7.1,7.2,7.3)、似然比检验(7.4)、分布拟合检验(7.4)、非参数检验(7.5,7.6),每一类又有若干种不同的检验方法。本文将重点讲解上述四类检验的基本概念、基本原理,不会详细讲解具体的检验方法。原理弄懂了,具体的检验方法可以参考书中的套路。

一、显著性检验及其基本概念

本节对应书中的7.1节,我按照自己的理解重写了一遍。当我第一次阅读本章的时候,很快就碰壁了(读到“势函数”的时候)。书中关于显著性水平、检验p值的定义也比较抽象,为此我增加了一些描述性的文字,尽量把这些概念、定义解释清楚。最后才对“势函数”进行研究。我把书中遇到的新概念分为以下三类:

(1)参数类(或者称“假设类”)

原假设:

对立假设:

所谓“假设检验”是在部分总体参数未知的情况下,对未知参数进行猜测(提出假设),然后利用抽样结果(证据)对假设进行验证,并作出“接受”或“拒绝”假设的判断。

因此“假设”(名词)是针对未知参数的猜测,它描述了未知参数在参数空间

中的取值范围。

它具有以下特点:

  1. 以最常见的情况作为原假设。例如:女士品茶,大部分人不具备区分MT,TM的能力,因此原假设为“该女士无此鉴别能力”;生产合金,设计值不低于110,因此一般情况下合金强度不低于设计值,原假设为
  2. 对立假设分为3种情况:

称为“双侧假设”,
称为“单侧假设”。对立假设一般为原假设的补集,但也有
的情况。值得注意的是,对立假设中不允许出现等号,因此没有小于等于或大于等于的情况。

(2)样本类

检验统计量:由样本观测值组成,用于判断原假设是否成立。它是我们作出检验判断的证据、依据

检验统计量所在样本空间可以划分为两个不相交的部分:

拒绝域

,如
。当
位于
内,表示拒绝原假设

接受域

,即W的补集。如
。当
位于
内,表示接受原假设

(3)概率类

“假设”位于参数空间,“证据”位于样本空间,参数与样本是通过总体分布联系的。因此从“证据”推断“假设”是否成立,不是一个简单的判断题,而是一个概率计算问题。以“假设”为前提条件,出现目前抽样结果的概率是多少呢?我们将根据概率计算的结果,决定拒绝或者接受原假设。

显著性水平

  1. 第一类错误:当
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值