由于我是先确定了做数据挖掘方向的研究,之后在网上海量脑补相关信息。首先涉及到的问题就是选用什么样的语言。关于脑补得到的结论,大家可以翻看我之前的博文(同一篇文章,两个链接):
今天,只说一下Python(但是好像也不能只说Python吧)。
Why is Python
Python和R
做数据方面的东西,提到了Python,那不得不提到一下R。为什么是Python而不是R呢?这里简单对比一下Python和R(其实各大论坛的对比好多好多了)。且听慢慢道来。这里先复习一下我的基础:纯0,语言基础0。所以,传说如果深入一门语言,再学其它的也就是一两周(单纯学习语言)。我的目标,在开始不想局限在一个领域,所以第一个语言最好相对全面一点。
首先,Python和R都是开源的,网上各种库包都很多。有说两者都好的,有说其中之一好用另外一个也不差的。所以,基本判断,这方面两者互有优势。
第二,基因。这里先说R,R是搞统计的人编的。也就是他的基因里本身就是为写这方面服务的,效果更好。随着各种库的丰富,功能也越来越强大。但是,全面性,个人感觉不如python(书读的少,说错了,你别打我)。python功能性相对更全面,首先做数据方面的,各种包。可以参考《利用python进行数据分析》。此外,移动端的开发,web开发等等,也有不错的表现。
综上,就先把python作为自己首学目标。
python的下载与安装
python的版本选择
这里主要是python2和python3的选择问题。我选的是python3。写这篇博文的时候最新版是3.5.1。于是我就用的这个版本。虽然现在仍然有很多的程序员用的是python2,不过python3才是Python发展的未来。当然整个的社区不可能一瞬间转到Python3,而且在一段时间内Python2仍然会在很大范围内使用。但是,初学者还是直接入手Python3吧。不仅有前途,而且安装等各个方面都很友好。
这里做一个类比很能说明问题。在我的公司(大公司)很多人都用office2003,我在公司买了office2007的第一时间,申请换了2007,一直用到现在。家里个人电脑装着office365。其中的差别,我就不多说了。虽说,现在公司里2003的比例越来越低,但是,现在已经到了2016年了,仍然存在。大行其道的还是2007。但是究竟哪个好用,就不用我多说了吧。
python的下载
下载一定是去官网,附上一个网址。我用的是windows。https://www.python.org/downloads/release/python-351/。
为了防止这个链接版本过期,你也可以直接进入主页https://www.python.org/ 之后点击download选择你下载的版本。毫不犹豫选择最新的。进入以后有很多可选的。windows下有x86的版本(32位的)也有x86-64(64位版本)。我安的是64位的。另外,还有executable installer和web-based installer。主要区别可以理解为第一个是下载安装文件,下载以后直接安装。web-based是下载以后安装过程会从网上继续下载文件。我用的是web-based的。然后,很快就下载完了。好简单的。
python的安装
安装更简单,一路NEXT。我的习惯是安装在默认目录。最后点击安装完成。这里要说的一点是环境的设置,以前的很多版本需要收到设置。我装的3.5.1这一版已经可以自动设置了。在选择安装目录的这个界面,最下面有一个“Add Python 3.5 to PATH",把这个勾上,安装完就设置完成了。很简单吧。
编辑器
最好的Pyhton编辑器是什么?这个问题很难回答。我用的是Python自己的IDLE,安装完Python3.5.1以后就有,同时他还有个shell,可以直接很运行结果。自动缩进等各种功能很舒服。
当然,根据你的爱好可以选择其他的编辑器:
windows用户可以用Notepad++(我的电脑也装了,有时候会用到)
Mac OSX用户可以用TextMate(我的mac是娱乐专用,所以安了一个但是用的不多)
Linux用户可以选择Eclipse(纯网上查到的,因为我不会用Linux)
另外还有强大的Emacs(我常用,但是目前还没用来写代码),Vim等等。
当然,深入以后还有很多,比如Anaconda和Pycharm。如果做开发,Pycharm也是不错的选择。熟悉Matlab,喜欢界面化感觉的可以使用Anaconda,甚至有些人推荐必装Anaconda,因为除了刚才所说的优势,Anaconda还自带了很多适合搞科学研究的库。
但是,据说大神们的一致反映是,如果流畅使用Emacs,一切的一切都是浮云了。
简单的入门,虽然不难,希望可以帮助一些想我一样基础薄弱的朋友们,少耽误一些时间。o