自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(341)
  • 收藏
  • 关注

原创 神经网络的神经元个数,神经网络每层单元数

如果是RBF神经网络,那么只有3层,输入层,隐含层和输出层。现在还没有什么成熟的定理能确定各层神经元的神经元个数和含有几层网络,大多数还是靠经验,不过3层网络可以逼近任意一个非线性网络,神经元个数越多逼近的效果越好。你后来的问题我也比较晕,不太懂。如果是RBF神经网络,那么只有3层,输入层,隐含层和输出层。生物神经网络:一般指生物的大脑神经元,细胞,触点等组成的网络,用于产生生物的意识,帮助生物进行思考和行动。提出的公式,可以算的s1取值范围,到时自己选取合适职,s2就是你输出层节点数,也就是输出维数。

2022-10-24 21:11:03 1535

原创 图卷积神经网络代码讲解,cnn卷积神经网络伪代码

卷积神经网络中卷积层间的连接被称为稀疏连接(sparse connection),即相比于前馈神经网络中的全连接,卷积层中的神经元仅与其相邻层的部分,而非全部神经元相连。具体地,卷积神经网络第l层特征图中的任意一个像素(神经元)都仅是l-1层中卷积核所定义的感受野内的像素的线性组合。且在一个通道内,所有神经元的权重系数相同。卷积神经网络的稀疏连接具有正则化的效果,提高了网络结构的稳定性和泛化能力,避免过度拟合,同时,稀疏连接减少了权重参数的总量,有利于神经网络的快速学习,和在计算时减少内存开销。

2022-10-24 21:09:57 368

原创 python神经网络编程 代码,神经网络代码实现

/首先P[j]层有多少个节点,就有多少个指针,每个指针指向一个权值数组.因为p[j]是二级指针,存放的是某指针的地址,某指针可以指向一维数组.%------------------附加:抽取数学表达式----------------------------top。%利用x(t-5),x(t-4),x(t-3),x(t-2),x(t-1)作为输入预测x(t),将x(t)作为输出数据。

2022-10-24 21:08:53 1287 1

原创 基于深度卷积神经网络,深度卷积神经网络结构

深度学习 deep learning深度学习定义:欣顿(Hinton)等提出的一种研究信息的最佳表示及其获取方法的技术,在神经网络或信念网络的情况下是对基于深层结构或网络表示的输入输出间映射进行机器学习的过程。学科:计算机科学技术_人工智能_神经网络相关名词:数据挖掘 人工智能 机器学习【深度学习相关】

2022-10-24 10:28:38 858

原创 神经网络的基本构成要素,构成神经网络的三要素

人工神经网络是生物神经网络在某种简化意义下的技术复现,作为一门学科,它的主要任务是根据生物神经网络的原理和实际应用的需要建造实用的人工神经网络模型,设计相应的学习算法,模拟人脑的某种智能活动,然后在技术上实现出来用以解决实际问题。联想记忆是一个典型的无限制的例子。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。生物神经网络:一般指生物的大脑神经元,细胞,触点等组成的网络,用于产生生物的意识,帮助生物进行思考和行动。

2022-10-24 10:27:19 639

原创 神经网络与模糊控制,稀疏神经网络是什么

卷积神经网络中卷积层间的连接被称为稀疏连接(sparse connection),即相比于前馈神经网络中的全连接,卷积层中的神经元仅与其相邻层的部分,而非全部神经元相连。且在一个通道内,所有神经元的权重系数相同。卷积神经网络的稀疏连接具有正则化的效果,提高了网络结构的稳定性和泛化能力,避免过度拟合,同时,稀疏连接减少了权重参数的总量,有利于神经网络的快速学习,和在计算时减少内存开销。真正的神经网络,是没法诊断的,因为他有自我恢复,不是修复是恢复,就是功能替代,修的话,那要看有无故障报警显示。

2022-10-24 10:26:03 627

原创 卷积神经网络降维方法,深度神经网络降维方法

端到端指的是输入是原始数据,输出是最后的结果,原来输入端不是直接的原始数据,而是在原始数据中提取的特征,这一点在图像问题上尤为突出,因为图像像素数太多,数据维度高,会产生维度灾难,所以原来一个思路是手工提取图像的一些关键特征,这实际就是就一个降维的过程。那么问题来了,特征怎么提?

2022-10-23 14:29:44 558

原创 神经网络有哪些基本功能,常见神经网络都有哪些

关于深度神经网络模型的相关学习,推荐CDA数据师的相关课程,课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。关于深度神经网络模型的相关学习,推荐CDA数据师的相关课程,课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。

2022-10-22 12:43:27 264

原创 如何提高bp神经网络精度,改进bp神经网络的方案

人工神经网络,是一种旨在模仿人脑结构及其功能的信息处理系统,就是使用人工神经网络方法实现模式识别.可处理一些环境信息十分复杂,背景知识不清楚,推理规则不明确的问题,神经网络方法允许样品有较大的缺损和畸变.神经网络的类型很多,建立神经网络模型时,根据研究对象的特点,可以考虑不同的神经网络模型. 前馈型BP网络,即误差逆传播神经网络是最常用,最流行的神经网络.BP网络的输入和输出关系可以看成是一种映射关系,即每一组输入对应一组输出.BP算法是最著名的多层前向网络训练算法,尽管存在收敛速度慢,局部极值等缺点,但可

2022-10-22 12:42:21 901

原创 两个神经网络拼接到一起,两个神经网络合并

在学习阶段应该用大量的样本进行训练学习,通过样本的大量学习对神经网络的各层网络的连接权值进行修正,使其对样本有正确的识别结果,这就像人记数字一样,网络中的神经元就像是人脑细胞,权值的改变就像是人脑细胞的相互作用的改变,神经网络在样本学习中就像人记数字一样,学习样本时的网络权值调整就相当于人记住各个数字的形象,网络权值就是网络记住的内容,网络学习阶段就像人由不认识数字到认识数字反复学习过程是一样的。在图像识别阶段,只要将图像的点阵向量作为神经网络分类器的输入,经过网络的计算,分类器的输出就是识别结果。

2022-10-21 13:54:35 508

原创 可视化神经网络实验报告,可视化神经网络工具

一、网络爬虫网络爬虫是Python比较常用的一个场景,国际上,google在前期大量地运用Python言语作为网络爬虫的根底,带动了整个Python言语的运用发展。二、数据处理Python有很齐备的生态环境。"大数据"分析中涉及到的分布式核算、数据可视化、数据库操作等,Python中都有成熟的模块能够挑选完结其功能。关于Hadoop-MapReduce和Spark,都能够直接运用Python完结核算逻辑,这不管关于数据科学家仍是关于数据工程师而言都是十分便当的。三、web开发Python的诞生前史比Web还

2022-10-21 13:53:25 1719

原创 神经网络提取图像特征,神经网络如何识别图像

神经网络提取图像的概率分布特征:由于一个映射面上的神经元共享权值,因而减少了网络自由参数的个数,降低了网络参数选择的复杂度。卷积神经网络中的每一个特征提取层(C-层)都紧跟着一个用来求局部平均与二次提取的计算层(S-层),这种特有的两次特征提取结构使网络在识别时对输入样本有较高的畸变容忍能力。神经网络特点:例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类

2022-10-21 13:52:11 126

原创 神经网络算法是什么意思,人工神经网络英文缩写

神经网络可以指向两种,一个是生物神经网络,一个是人工神经网络神经网络算法缩写。生物神经网络:一般指生物的大脑神经元,细胞,触点等组成的网络,用于产生生物的意识,帮助生物进行思考和行动。人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。

2022-10-21 13:20:02 70

原创 人工神经网络研究综述,人工神经网络分析方法

人工神经网络特有的非线性适应性信息处理能力,克服了传统人工智能方法对于直觉,如模式、语音识别、非结构化信息处理方面的缺陷,使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。人工神经网络与其它传统方法相结合,将推动人工智能和信息处理技术不断发展。近年来,人工神经网络正向模拟人类认知的道路上更加深入发展,与模糊系统、遗传算法、进化机制等结合,形成计算智能,成为人工智能的一个重要方向,将在实际应用中得到发展。将信息几何应用于人工神经网络的研究,为人工神经网络的理论研究开辟了新的途径。神经计

2022-10-20 18:59:35 267

原创 神经网络图像识别技术,神经网络指纹识别

声纹,也称 “ 语图 ” ,是由专用的电声转换仪器(语图仪)将声波特征绘制成的波谱图形。声纹鉴定就是把未知人的语声和已知人的语声,通过语图仪分别制成声纹图谱,再依据声纹图上的特征进行分析、比较和判断,确定二者是否为同一人的语声。它是文检技术中近些年发展起来的语音识别的先进科学手段。目前,许多国家都己把声纹鉴定作为辨认犯罪嫌疑人的重要手段,为侦查工作提供新的线索和证据。

2022-10-20 18:58:27 552

原创 神经网络 深度神经网络,从零开始搭建神经网络

搭建由一个输入层,一个隐藏层,一个输出层组成的三层神经网络。相应的,输出层的节点数则是由类的数量来决定,也是2个。(因为我们只有一个预测0和1的输出节点,所以我们只有两类输出,实际中,两个输出节点将更易于在后期进行扩展从而获得更多类别的输出)。以x,y坐标作为输入,输出的则是两种概率,一种是0(代表女),另一种是1(代表男)。其次至少需要具备一些适用于研究的编程语言的技能,例如python,matlab,(C++也可行)等,哪怕不自己实现最简单的神经网络而是用API,也是需要一定计算机能力才能应用之。

2022-10-19 11:18:35 65

原创 matlab中的神经网络怎么用,matlab怎么搭建神经网络

图中 yi表示神经元i的输出,函数f称为激活函数 ( Activation Function )或转移函数 ( Transfer Function ) ,net称为净激活(net activation)。图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值 ( threshold ),或称为偏置( bias )。对于P,x1是行向量,x2是行向量。双极S形函数与S形函数主要区别在于函数的值域,双极S形函数值域是(-1,1),而S形函数值域是(0,1)。

2022-10-19 11:17:24 1118

原创 卷积神经网络 特征提取,卷积神经网络处理数据

图:卷积神经网络的概念示范:输入图像通过和三个可训练的滤波器和可加偏置进行卷积,滤波过程如图一,卷积后在C1层产生三个特征映射图,然后特征映射图中每组的四个像素再进行求和,加权值,加偏置,通过一个Sigmoid函数得到三个S2层的特征映射图。一般地,C层为特征提取层,每个神经元的输入与前一层的局部感受野相连,并提取该局部的特征,一旦该局部特征被提取后,它与其他特征间的位置关系也随之确定下来;S层是特征映射层,网络的每个计算层由多个特征映射组成,每个特征映射为一个平面,平面上所有神经元的权值相等。

2022-10-19 11:16:12 549

原创 神经网络多分类预测模型,人工神经网络分类预测

朴素贝叶斯分类器算法是最受欢迎的学习方法之一,按照相似性分类,用流行的贝叶斯概率定理来建立机器学习模型,特别是用于疾病预测和文档分类。多分类:标签为多个值,网络需要输出一个维度与标签数量一致的z-score向量,向量需要通过softmax激活后转化为对应各标签的概率(概率和为1),而判定出的标签是概率最高的那个。GRNN的预测精度是不错的。二分类:标签为0和1,网络输出的结果要经过sigmoid激活函数处理,输出值的值域为0~1之间,小于0.5则视为标签0, 大于等于0.5则为标签1。

2022-10-19 11:15:00 626

原创 神经网络参数优化算法,神经网络损失函数设计

若果对你有帮助,请点赞。神经网络的结构(例如2输入3隐节点1输出)建好后,一般就要求神经网络里的权值和阈值。现在一般求解权值和阈值,都是采用梯度下降之类的搜索算法(梯度下降法、牛顿法、列文伯格-马跨特法、狗腿法等等),这些算法会先初始化一个解,在这个解的基础上,确定一个搜索方向和一个移动步长(各种法算确定方向和步长的方法不同,也就使各种算法适用于解决不同的问题),使初始解根据这个方向和步长移动后,能使目标函数的输出(在神经网络中就是预测误差)下降。 然后将它更新为新的解,再继续寻找下一步的移动方向的步长,

2022-10-19 11:13:38 349

原创 bp神经网络是前馈网络吗,什么是前馈神经网络

BP算法的基本思想是:学习过程由信号正向传播与误差的反向回传两个部分组成;正向传播时,输入样本从输入层传入,经各隐层依次逐层处理,传向输出层,若输出层输出与期望不符,则将误差作为调整信号逐层反向回传,对神经元之间的连接权矩阵做出处理,使误差减小。经反复学习,最终使误差减小到可接受的范围。具体步骤如下:1、从训练集中取出某一样本,把信息输入网络中。2、通过各节点间的连接情况正向逐层处理后,得到神经网络的实际输出。3、计算网络实际输出与期望输出的误差。

2022-10-18 18:44:31 508

原创 双色球神经网络算法分析,双色球预测程序算法

当期号码之间产生的间距与号码分布有着密切的关系。而根据号码之间产生的间隔距离,从号码之间的间距角度来分析红球号码在各个区间的冷热变化,虽不能确定具体的号码,却能有利于帮助大家找到号码大致的出号范围,把握红球号码在各个区间的冷热变化,从而在看图选号时,使选号变得更有方向。双色球与其它彩种一样,没什么绝密算法,因为开奖结果是随机产生的偶然,并非必然,它毫无规律可循,所以无论什么方式方法或计算都枉然,大家凭自我感觉选号,尽人事听天命,它中大奖概率太低,不中是必然,能中是巧合,建议小投入撞大运,平常心,祝你好运。

2022-10-18 18:43:05 1810 3

原创 神经网络中的梯度是什么,神经网络梯度公式推导

累乘中一个梯度小于1,那么不断累乘,这个值会越来越小,梯度衰减很大,迅速接近0神经网络梯度是什么。在神经网络中是离输出层近的参数,梯度越大,远的参数,梯度越接近0。根本原因是sigmoid函数的缺陷。1、好的初始化方法,逐层预训练,后向传播微调。2、换激活函数,用relu,leaky——relu。靠的是使梯度靠近1或等于1,避免了在累乘过程中,结果迅速衰减。避免梯度消失和梯度爆炸的方案:使用新的激活函数Sigmoid 函数 和 双曲正切函数都会导致梯度消失的问题。

2022-10-18 18:42:00 246

原创 神经网络梯度是什么意思,神经网络梯度消失问题

在反向传播的过程中,需要对激活函数进行求导,如果导数大于1,那么会随着网络层数的增加梯度更新将会朝着指数爆炸的方式增加,这就是梯度爆炸。同样,如果导数小于1,那么随着网络层数的增加梯度更新信息会朝着指数衰减的方式减少,这就是梯度消失。梯度消失和梯度爆炸的根本原因在于反向传播训练法,属于先天不足。2、解决方法1)预训练加微调。先对整个网络逐层预训练,预训练完成之后再微调。(应用的不是很多)2)梯度剪切。

2022-10-17 22:49:28 48

原创 神经网络验证集和测试集,卷积神经网络入侵检测

就是把样本数据分为训练集和测试集,训练集用来训练神经网络,测试集用来验证模型。

2022-10-17 22:48:23 221

原创 基于神经网络的人工智能,人工神经网络心得体会

要学习人工智能,就要先了解清楚人工智能是什么。人工智能就是制造智能的机器,更特指制作人工智能的程序。人工智能模仿人类的思考方式使计算机能智能的思考问题,人工智能通过研究人类大脑的思考、学习和工作方式,然后将研究结果作为开发智能软件和系统的基础。第一步:选好研究领域人工智能包含很多细分领域,包括可视化、图像识别、智能机器人等。想要学习人工智能,要在学习前选好自己感兴趣的方向,有方向的进行学习。寻找一些免费的书籍,对行业有所了解后才能清楚自己要走的路。贪多嚼不烂,不提倡每个领域都去尝试。要选定一个方向去深入研究

2022-10-17 22:47:14 612

原创 神经网络优化设置方案,神经网络求解优化问题

遗传代数 %下面调用gaot工具箱,其中目标函数定义为gabpEval [x,endPop,bPop,trace]=ga(aa,'gabpEval',[],initPpp,[1e-6 1 1],'maxGenTerm',gen,... 'normGeomSelect',[0.09],['arithXover'],[2],'nonUnifMutation',[2 gen 3]);%绘收敛曲线图 figure(1) plot(trace(:,1),1./trace(:,3),'r-');

2022-10-17 22:46:04 208

原创 模糊神经网络应用实例,模糊算法和神经网络

模糊神经网络有如下三种形式:1.逻辑模糊神经网络2.算术模糊神经网络3.混合模糊神经网络模糊神经网络就是具有模糊权系数或者输入信号是模糊量的神经网络。上面三种形式的模糊神经网络中所执行的运算方法不同。模糊神经网络无论作为逼近器,还是模式存储器,都是需要学习和优化权系数的。学习算法是模糊神经网络优化权系数的关键。对于逻辑模糊神经网络,可采用基于误差的学习算法,也即是监视学习算法。对于算术模糊神经网络,则有模糊BP算法,遗传算法等。对于混合模糊神经网络,目前尚未有合理的算法;不过,混合模糊神经网络一般

2022-10-17 22:45:00 503

原创 bp神经网络实现人脸识别,车牌识别深度神经网络

1、对样本集进行归一化2、创建BP神经网络3、设置网络的训练参数4、把样本输入BP网络进行训练5、把代识别的样本输入样本进行训练得到相应的结果,并输出。这就是构建BP神经网络的大致步骤谷歌人工智能写作项目:小发猫车牌识别技术(Vehicle License Plate Recognition,VLPR) 是计算机视频图像识别技术在车辆牌照识别中的一种应用基于bp神经网络的车牌识别程序。车牌识别技术要求能够将运动中的汽车牌照从复杂背景中提取并识别出来,通过车牌提取、图像预处理、特征提取、车牌字符识别

2022-10-16 22:05:31 235

原创 神经网络除了bp还有什么,bp神经网络包括哪些

BP算法的基本思想是:学习过程由信号正向传播与误差的反向回传两个部分组成;正向传播时,输入样本从输入层传入,经各隐层依次逐层处理,传向输出层,若输出层输出与期望不符,则将误差作为调整信号逐层反向回传,对神经元之间的连接权矩阵做出处理,使误差减小。经反复学习,最终使误差减小到可接受的范围。具体步骤如下:1、从训练集中取出某一样本,把信息输入网络中。2、通过各节点间的连接情况正向逐层处理后,得到神经网络的实际输出。3、计算网络实际输出与期望输出的误差。

2022-10-15 09:47:20 359

原创 递归神经网络结构形式,RNN神经网络基本原理

RNN建立在与FNN相同的计算单元上,两者之间区别在于:组成这些神经元相互关联的架构有所不同。FNN是建立在层面之上,其中信息从输入单元向输出单元单向流动,在这些连通模式中并不存在不定向的循环。尽管大脑的神经元确实在层面之间的连接上包含有不定向循环,我们还是加入了这些限制条件,以牺牲计算的功能性为代价来简化这一训练过程。因此,为了创建更为强大的计算系统,我们允许RNN打破这些人为设定强加性质的规定:RNN无需在层面之间构建,同时定向循环也会出现。事实上,神经元在实际中是允许彼此相连的。谷歌人工智能写作项目

2022-10-15 09:46:15 341

原创 图神经网络发展进程,超图卷积神经网络

由于神经网络是多学科交叉的产物,各个相关的学科领域对神经网络都有各自的看法,因此,关于神经网络的定义,在科学界存在许多不同的见解。目前使用得最广泛的是T.Koholen的定义,即"神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。"如果我们将人脑神经信息活动的特点与现行冯·诺依曼计算机的工作方式进行比较,就可以看出人脑具有以下鲜明特征:1. 巨量并行性。

2022-10-15 09:45:11 577

原创 神经网络是一种算法吗,神经网络包括哪些算法

BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。

2022-10-15 09:44:05 766

原创 识别车牌是什么神经网络,车牌识别深度神经网络

通过对图像的采集和处理,完成车牌自动识别功能,能从一幅图像中自动提取车牌图像,自动分割字符,进而对字符进行识别.其硬件基础一般包括触发设备(监测车辆是否进入视野)、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机(如计算机)等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。车牌识别技术要求能够将运动中的汽车牌照从复杂背景中提取并识别出来,通过车牌提取、图像预处理、特征提取、车牌字符识别等技术,识别车辆牌号,目前的技术水平为字母和数字的识别率可达到96%,汉字的识别率可达到95%。

2022-10-15 09:42:59 447

原创 训练一个神经网络要多久,神经网络训练时长

为了方便观察数据分布,我们选用一个二维坐标的数据,下面共有4个数据,方块代表数据的类型为1,三角代表数据的类型为0,可以看到属于方块类型的数据有(1,2)和(2,1),属于三角类型的数据有(1,1),(2,2),现在问题是需要在平面上将4个数据分成1和0两类,并以此来预测新的数据的类型。学习神经网络这段时间,有一个疑问,BP神经网络中训练的次数指的网络的迭代次数,如果有a个样本,每个样本训练次数n,则网络一共迭代an次,在n>>a 情况下 , 网络在不停的调整权值,减小误差,跟样本数似乎关系不大。

2022-10-14 20:42:10 254

原创 神经网络样本太少怎么办,神经网络样本数量最少

为了方便观察数据分布,我们选用一个二维坐标的数据,下面共有4个数据,方块代表数据的类型为1,三角代表数据的类型为0,可以看到属于方块类型的数据有(1,2)和(2,1),属于三角类型的数据有(1,1),(2,2),现在问题是需要在平面上将4个数据分成1和0两类,并以此来预测新的数据的类型。学习神经网络这段时间,有一个疑问,BP神经网络中训练的次数指的网络的迭代次数,如果有a个样本,每个样本训练次数n,则网络一共迭代an次,在n>>a 情况下 , 网络在不停的调整权值,减小误差,跟样本数似乎关系不大。

2022-10-14 20:41:04 101

原创 神经网络的权重初始化,神经网络的权值和阈值

神经网络的权值是通过对网络的训练得到的。这种方式有一个问题,就是有时一个神经元的初始权值输入向量太远,以至于它从未在竞争中获胜,因而也从未得到学习,这将形成毫无用处的“死”神经元。汉语中,“网络”一词最早用于电学《现代汉语词典》(1993年版)做出这样的解释:“在电的系统中,由若干元件组成的用来使电信号按一定要求传输的电路或这种电路的部分,叫网络。4、在命令行窗口按回车键之后,可以看到出现结果弹窗,最上面的Neural Network下面依次代表的是“输入、隐含层、输出层、输出”,隐含层中有5个神经元。

2022-10-14 20:39:55 474

原创 人工神经网络技术的优点,人工神经网络是算法吗

人工神经网络的特点和优越性,主要表现在三个方面:第一,具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。第二,具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。第三,具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反

2022-10-14 20:38:42 248

原创 卷积神经网络做回归预测,卷积神经网络推导过程

在DNN兴起之前,RBF由于出色的局部近似能力,被广泛应用在SVM的核函数中,当然也有我们熟悉的RBF神经网络(也就是以RBF函数为激活函数的单隐含层神经网络)。(2)由于ANN的输出结果与实际结果有误差,则计算估计值与实际值之间的误差,并将该误差从输出层向隐藏层反向传播,直至传播到输入层;(1)将训练集数据输入到ANN的输入层,经过隐藏层,最后达到输出层并输出结果,这是ANN的前向传播过程;不断迭代上述过程,直至收敛。其中,表示输入的样本,表示实际的分类,表示预测的输出,表示神经网络的最大层数。

2022-10-14 20:37:35 249

原创 神经网络相关性分析方法,神经网络相关性分析图

原则上讲,数据挖掘可以应用于任何类型的信息存储库及瞬态数据(如数据流),如数据库、数据仓库、数据集市、事务数据库、空间数据库(如地图等)、工程设计数据(如建筑设计等)、多媒体数据(文本、图像、视频、音频)、网络、数据流、时间序列数据库等。换句话说,数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘是模糊的和随机的。数据挖掘所需要的数据集是很大的,只有数据集越大,得到的规律才能越贴近于正确的实际的规律,结果也才越准确。

2022-10-13 16:39:24 448

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除