python画车辆轨迹图_如何利用 Python 绘制酷炫的 车辆轨迹 — 速度时空图?三维数据用二维图像呈现...

本文介绍了如何利用Python的Matplotlib库绘制车辆轨迹-速度时空图,详细讲解了数据准备、绘图工具选择、绘图过程及图像美化,提供了一种将三维数据用二维图像呈现的方法。
摘要由CSDN通过智能技术生成

说明:本文系交通攻城狮原创文章,如需转载请私信联系,侵权必究。

2020,第 30 期,编程笔记

建议直接阅读精编版:如何利用 Python 绘制酷炫的 车辆轨迹 — 速度时空图?三维数据用二维图像呈现​mp.weixin.qq.comv2-f006ebaf4dcca9c5f3fafe69968c46ec_180x120.jpg

以下为正文:

在近期的论文写作中,需要绘制轨迹-速度时空图,中间是几经波折,遇到了各种问题。这个过程也让我再次认识到利用编程解决问题的便利性,可能过程很难,但是这种可以高度自定义真是太多软件无法替代的 ......

1. 问题由来

最近阅读论文中,遇到了一类图,非常好看,并且在其他论文中也多次遇到。比如,在 Trajectory data-based traffic flow studies: A revisit 一文中的图 1 ,如下图所示[1]:

由于原图较长,这里仅引用了部分图。从上图中可以清楚的看出几个关键信息:横轴表示时间变化,说明数据需要是时间序列的

纵轴表示空间位置,可以理解为从离开某一道路截面后,车辆行驶的距离

每条轨迹线均表示一辆车的行驶路径变化,而线条的颜色则表示瞬时速度值

因此,如果想要绘制出上图,那么就需要有车辆的瞬时轨迹、速度、时间等信息的数据集。

2. 准备数据

为了尝试绘制出该图像,现在需要做两个工作。第一,找到合适的数据;第二,找到顺手的绘图工具。

基础数据

在《权威数据:交通领域科研常用数据集总结与分享》一文中,已经分享了常见的公开数据集。本次使用其中 NGSIM 的数据,这和前文中图源数据是一致的。

对于 NGSIM 数据集,作简要介绍[2]:其中包含 4 个路段的车辆轨迹数据,任何一个均是采用在路段的周边高层建筑上设置高清摄像机录像,然后通过图像处理,将每辆车的轨迹变化采集出来,进而可计算出车辆所在的车道、瞬时速度、瞬时加速度、瞬时车头时距等等。

作为与本次绘图相关的关键信息,我们仅需知道以下数据:作为演示,仅使用一个车道的数据即可

每辆车从进入摄像区域到离开,中间的瞬时速度信息,NGSIM 中对应的数据标签是 v_Vel

每辆车从进入摄像区域到离开,中间的位置坐标变化,NGSIM 中对应的数据标签是 Local_X、Local_Y

与之对应的时刻,NGSIM 中对应的数据标签是 Global_Time

好了,知道了上述三个关键数据后,就可以利用绘图工具绘制了。

绘图工具

考虑到可重复性、可移植性和方便程度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值