周长最短面积最大_周长一定的n边形为什么正n边形面积最大?等周定理有何应用?...

5e4c5436ad68d18c7f123aa45930b405.gif

03720840ebcce7cb37fa74f74cb30a3b.gif

妈咪说:知识就是力量

735de1cc9126cc6f7f1ef1d0fd4f7d68.png

年前最后一坑,咱们来讲有一期视频中提到的那个水很深的问题,为什么在周长一定的多边形当中,正多边形面积最大呢?这个问题是不是看起来好简单啊,而且直觉告诉我们它就是对的,那为什么说它水很深呢,实际上严谨的一般化证明出现的很晚,比如说你想证明周长一定的三角形,正三角形面积最大这个比较容易,周长一定的四边形正方形面积最大这个也不难,但是你怎么证明周长一定的n边形正n边形面积最大呢?这就叫做一般化,如果想要一般化的证明,恐怕我们就需要用到等周定理了,也就是在周长一定的图形当中,圆的面积最大。这个结论大家肯定都知道了,然而有趣的是,最早尝试证明等周定理的人是公元前五世纪古希腊人叫做西奥多罗斯,他是这么证的,他说众所周知,周长一定的多边形当中,正多边形面积最大,根据这个我计算了一个结论,周长一定的图形当中,正方形面积比正三角形面积大,正五边形面积比正方形面积大,正六边形面积比正五边形面积大,所以以此类推,应该是圆的面积最大。这就是最早的对于等周定理的证明,不过显然在数学家眼里这个证明很不严谨,所以关于严谨的等周定理的证明出现的也很晚,一直到了变分法的出现,咱们就不去证明它了,只把它当做结论来用

2216648c1ed7c573e4457deee4742b21.png

勾股定理在解决几问题具有广泛应用,尤其是在计算特定图面积周长。结合《勾股定理竞赛培优训练题集》,我们可以具体探讨勾股定理在不同类型题目中的应用。例如,在计算等腰直角三角形面积,若知道斜长度为c,我们可以先求出两个直角,因为它们的长度相等,均为c/√2,然后利用面积公式(1/2)×底×高计算出面积。对于周长的计算,则需要知道其他两条的长度,同样应用勾股定理求出未知长,再求和得到周长。 参考资源链接:[勾股定理竞赛培优训练题集](https://wenku.csdn.net/doc/3b4yxno7f9?spm=1055.2569.3001.10343) 在解题过程中,我们可能还会遇到需要计算直角三角形的斜长或者确定其他长的情况。此,我们可以应用勾股定理的逆定理,即如果一个三角形的两的平方和等于第三的平方,那么这个三角形是直角三角形。根据这一原理,我们可以先利用题目给出的其他条件,比如已知角度、其他长或面积等,来求解未知长,进而求解面积周长。 此外,在处理更复杂的几,如长方体表面金属丝缠绕问题,需要将三维问题转化为二维问题进行分析。以圆柱为例,如果金属丝绕圆柱侧面一,则展开后成一个矩,其一为圆柱底面周长,另一为金属丝长度,这样就转化为了一个平面几问题。利用勾股定理,我们可以确定金属丝长度,再通过微积分知识找到使周长的路径。 对于长方体表面的路径问题,可以通过展开长方体表面得到一个平面图,然后利用勾股定理求出不同路径的长度,进而确定路径。这些题型考察了学生对于勾股定理以及几知识的灵活运用。 在学习和应用勾股定理,建议学生除了掌握勾股定理的基本公式外,还要熟悉其逆定理,并学会如将复杂问题简化、转化,以及结合其他几定理和数学工具来解决实际问题。《勾股定理竞赛培优训练题集》中的例题和习题,能够提供丰富的实战经验和解题技巧,对于提升这方面的能力是非常有帮助的。 参考资源链接:[勾股定理竞赛培优训练题集](https://wenku.csdn.net/doc/3b4yxno7f9?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值