adaboost算法_关于Adaboost算法

6f1f453bf0b31e0f095d750180167470.png

关于Adaboost算法

Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。

一.引入

对于Adaboost,可以说是久闻大名,据说在Deep Learning出来之前,SVM和Adaboost是效果最好的 两个算法,而Adaboost是提升树(boosting tree),所谓“提升树”就是把“弱学习算法”提升(boost)为“强学习算法”(语自《统计学习方法》),而其中最具代表性的也就是Adaboost了,貌似Adaboost的结构还和Neural Network有几分神似,我倒没有深究过,不知道是不是有什么干货

二.过程

b897840a14b60fe84dbde3988233f7ac.png ( from PRML)

这就是Adaboost的结构,最后的分类器YM是由数个弱分类器(weak classifier)组合而成的,相当于最后m个弱分类器来投票决定分类,而且每个弱分类器的“话语权”α不一样。

这里阐述下算法的具体过程:

1. 初始化所有训练样例的权重为1 / N,其中N是样例数

2. for m=1,……M:

a).训练弱分类器ym(),使其最小化权重误差函数(weighted error function):

  e406cf0ab42a84175c6585588fe9ade5.png  

b)接下来计算该弱分类器的话语权α:

ff46c2a64b8c2e32181e817eefe7d41c.png

c)更新权重:

c43fac4cb33b4b986d1650f944985660.png

其中Zm:

55ce533efaae2970c8d3b0e518f2bbeb.png

是规范化因子,使所有w的和为1。(这里公式稍微有点乱) 3. 得到最后的分类器:  995e58fc4c1094924f1b728b5e10f6f5.png     三.原理

可以看到整个过程就是和最上面那张图一样,前一个分类器改变权重w,同时组成最后的分类器

如果一个训练样例 在前一个分类其中被误分,那么它的权重会被加重,相应地,被正确分类的样例的权重会降低

使得下一个分类器 会更在意被误分的样例,那么其中那些α和w的更新是怎么来的呢?

下面我们从前项分步算法模型的角度来看看Adaboost:

直接将前项分步加法模型具体到adaboost上:

3d2e40c8caefb04d1594bd81b5c3dde9.png  

其中 fm是前m个分类器的结合

5a1c2d93ad39c55ecd12a76a7d6486d5.png

此时我们要最小化E,同时要考虑α和yl,

但现在我们假设前m-1个α和y都已经fixed了:那么

97b38f2f8de2960dcdba493c27451b8c.png

其中c56f1f5ecc01c905930dcdadf37fa81e.png,可以被看做一个常量,因为它里面没有αm和ym:

接下来:

d0618cbab4baa5b92b206e7451c7fad6.png                                   

其中Tm表示正分类的集合,Mm表示误分类的集合,这一步其实就是把上面那个式子拆开,没什么复杂的东西。

然后就是找ym了,就是最小化下式的过程,其实就是我们训练弱分类器

  920288c0bc120e8b8532f3f16e34ed5f.png   

有了ym,α也就可以找了,然后继续就可以找到更新w的公式了(注意这里得到的w公式是没有加规范化因子Z的公式,为了计算方便我们加了个Z进去)。因为这里算出来直接就是上面过程里的公式,就不再赘述了,有兴趣你可以自己算一算。

四.实现

终于到实现了,本次实现代码基本基于《统计学习方法》,比如有些符号(弱分类器是G(x),训练样例的目标是y而不是上文所述的t)差异

所有的代码你可以在我写的toy toolkit里面找到:DML (你都看到这了,给个star好不好)

# coding: UTF-8

from __future__ import division

import numpy as np

import scipy as sp

from weakclassify import WEAKC

from dml.tool import sign

class ADABC:

def __init__(self,X,y,Weaker=WEAKC):

'''

Weaker is a class of weak classifier

It should have a train(self.W) method pass the weight parameter to train

pred(test_set) method which return y formed by 1 or -1

see detail in

'''

self.X=np.array(X)

self.y=np.array(y)

self.Weaker=Weaker

self.sums=np.zeros(self.y.shape)

self.W=np.ones((self.X.shape[1],1)).flatten(1)/self.X.shape[1]

self.Q=0

#print self.W

def train(self,M=4):

'''

M is the maximal Weaker classification

'''

self.G={}

self.alpha={}

for i in range(M):

self.G.setdefault(i)

self.alpha.setdefault(i)

for i in range(M):

self.G[i]=self.Weaker(self.X,self.y)

e=self.G[i].train(self.W)

#print self.G[i].t_val,self.G[i].t_b,e

self.alpha[i]=1/2*np.log((1-e)/e)

#print self.alpha[i]

sg=self.G[i].pred(self.X)

Z=self.W*np.exp(-self.alpha[i]*self.y*sg.transpose())

self.W=(Z/Z.sum()).flatten(1)

self.Q=i

#print self.finalclassifer(i),'==========='

if self.finalclassifer(i)==0:

print i+1," weak classifier is enough to  make the error to 0"

break

def finalclassifer(self,t):

'''

the 1 to t weak classifer come together

'''

self.sums=self.sums+self.G[t].pred(self.X).flatten(1)*self.alpha[t]

#print self.sums

pre_y=sign(self.sums)

#sums=np.zeros(self.y.shape)

#for i in range(t+1):

# sums=sums+self.G[i].pred(self.X).flatten(1)*self.alpha[i]

# print sums

#pre_y=sign(sums)

t=(pre_y!=self.y).sum()

return t

def pred(self,test_set):

sums=np.zeros(self.y.shape)

for i in range(self.Q+1):

sums=sums+self.G[i].pred(self.X).flatten(1)*self.alpha[i]

#print sums

pre_y=sign(sums)

return pre_y

看train里面的过程和上文 阐述的一模一样,finalclassifier()函数是用来判断是否已经无误分类的点 的。

当然这里用的Weak Classifier是比较基础的Decision Stump,是根据x>v和x先试验下《统计学习方法》里面那个最简单的例子:

d713fde4bae8fabac48e1714023fcc97.png

可以看到也是三个分类器就没有误分点了,权值的选择也是差不多的。

其中后面那个-1 表示大于threshold分为负类,小于分为正类。1则相反。

78dba0a1a1866b982ef41905372f2c6f.png

加一些其它数据试试:

59fd4a90a84da89c0a923743e8a10173.png

结果:

 58136b8472d310b1e06ba6c91727b467.png 

我们把图画出来就是:

aa89b616bcf6bd1452339246733286fc.png

基本还是正确的,这是四个子分类器的图,不是最后总分类器的图啊~~~

(实验的代码你也可以在DML里面找到,你都看到这了,给个star好不好~~~~~)

Reference:

      【1】 《Pattern Recognition And Machine Learning》

      【2】 《统计学习方法》

--------------------- 

版权声明:本文为CSDN博主「Dark_Scope」的原创文章,遵循CC 4.0 by-sa版权协议,转载请附上原文出处链接及本声明。

原文链接:https://blog.csdn.net/Dark_Scope/article/details/14103983

关注本公众号

可查阅更多图像知识信息,合作共享!

e4fba29a0f0e8b01c7be39c0961258b2.png

声明:

此资料部分转载自网络,仅供学习参考。

39407b486997a266eebabfc9df7bc323.png07e24a92bcc97cb89c0a982ebfb1b541.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值