机器学习笔记(10)——Adaboost算法

Adaboost算法

1.概念

这里写图片描述

这就是Adaboost的结构,最后的分类器 YM Y M 是由数个弱分类器(weak classifier)组合而成的,相当于最后m个弱分类器来投票决定分类,而且每个弱分类器的“话语权”α不一样。
1.初始化所有训练样例的权重为 w1i=1N w 1 i = 1 N ,其中N是样例数,M个弱分类器
2.for m=1,…,M:

a)训练弱分类器 ym() y m ( ) ,使其最小化权重误差函数(weighted error function):

ϵm=n=1Nw(m)nI(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值