ubuntu启动定时任务_分布式异步任务队列神器-Celery

本文介绍了Celery作为异步任务队列的优势和应用场景,包括高并发请求、定时任务和异步任务。Celery采用生产者-消费者模型,通过中间人(如RabbitMQ或Redis)传递任务,支持任务状态监控和错误处理。文章还提供了简单的使用示例,展示了如何在Ubuntu上启动Celery任务。
摘要由CSDN通过智能技术生成

最近研究了下异步任务神器-Celery,发现非常好用,可以说是高可用,假如你发出一个任务执行命令给 Celery,只要 Celery 的执行单元 (worker) 在运行,那么它一定会执行;如果执行单元 (worker) 出现故障,如断电,断网情况下,只要执行单元 (worker) 恢复运行,那么它会继续执行你已经发出的命令。这一点有很强的实用价值:假如有交易系统接到了大量交易请求,主机却挂了,但前端用户仍可以继续发交易请求,发送交易请求后,用户无需等待。待主机恢复后,已发出的交易请求可以继续执行,只不过用户收到交易确认的时间延长而已,但并不影响用户体验。

Celery 简介

它是一个异步任务调度工具,用户使用 Celery 产生任务,借用中间人来传递任务,任务执行单元从中间人那里消费任务。任务执行单元可以单机部署,也可以分布式部署,因此 Celery 是一个高可用的生产者消费者模型的异步任务队列。你可以将你的任务交给 Celery 处理,也可以让 Celery 自动按 crontab 那样去自动调度任务,然后去做其他事情,你可以随时查看任务执行的状态,也可以让 Celery 执行完成后自动把执行结果告诉你。

应用场景:

  1. 高并发的请求任务。互联网已经普及,人们的衣食住行中产生的交易都可以线上进行,这就避免不了某些时间极高的并发任务请求,如公司中常见的购买理财、学生缴费,在理财产品投放市场后、开学前的一段时间,交易量猛增,确认交易时间较长,此时可以把交易请求任务交给 Celery 去异步执行,执行完再将结果返回给用户。用户提交后不需要等待,任务完成后会通知到用户(购买成功或缴费成功),提高了网站的整体吞吐量和响应时间,几乎不需要增加硬件成本即可满足高并发。
  2. 定时任务。在云计算,大数据,集群等技术越来越普及,生产环境的机器也越来越多,定时任务是避免不了的,如果每台机器上运行着自己的 crontab 任务,管理起来相当麻烦,例如当进行灾备切换时,某些 crontab 任务可能需要单独手工调起,给运维人员造成极大的麻烦,有了 Celery ,你可以集中管理所有机器的定时任务,而且灾备无论何时切换,crontab 任务总能正确的执行。
  3. 异步任务。 一些耗时较长的操作,比如 I/O 操作,网络请求,可以交给 Celery 去异步执行,用户提交后可以做其他事情,当任务完成后将结果返回用户即可,可提高用户体验。

Celery 的优点

  1. 纯 Python 编写,开源。这已经是站在巨人的肩膀上了,虽然 Celery 是由纯 Python 编写的,但协议可以用任何语言实现。迄今,已有 Ruby 实现的 RCelery 、node.js 实现的 node-celery 以及一个 PHP 客户端 ,语言互通也可以通过 using webhooks 实现。
  2. 灵活的配置。默认的配置已经满足绝大多数需求,因此你不需要编写配置文件基本就可以使用,当然如果有个性化地定制,你可以选择使用配置文件,也可以将配置写在源代码文件里。
  3. 方便监控。任务的所有状态,均在你的掌握之下。
  4. 完善的错误处理。
  5. 灵活的任务队列和任务路由。你可以非常方便地将一个任务运行在你指定的队列上,这叫任务路由。

Celery 的架构

学习一个工具,最好先从它的架构理解,辅以快速入门的代码来实践,最深入的就是阅读他的源码了,下图是 Celery 的架构图。

676b3864dec2775b8c39fe5d0366e172.png

celery架构.png任务生产者 :调用Celery提供的API,函数,装饰器而产生任务并交给任务队列的都是任务生产者。

任务调度 Beat:Celery Beat进程会读取配置文件的内容,周期性的将配置中到期需要执行的任务发送给任务队列

中间人(Broker):Celery 用消息通信,通常使用中间人(Broker)在客户端和 worker 之前传递,这个过程从客户端向队列添加消息开始,之后中间人把消息派送给 worker。官方给出的实现Broker的工具有:

名称状态监视远程控制RabbitMQ稳定是是Redis稳定是是Mongo DB实验性是是Beanstalk实验性否否Amazon SQS实验性否否Couch DB实验性否否Zookeeper实验性否否Django DB实验性否否SQLAlchemy实验性否否Iron MQ第三方否否在实际使用中我们选择 RabbitMQ 或 Redis 作为中间人即可。

执行单元 worker:worker 是任务执行单元,是属于任务队列的消费者,它持续地监控任务队列,当队列中有新地任务时,它便取出来执行。worker 可以运行在不同的机器上,只要它指向同一个中间人即可,worker还可以监控一个或多个任务队列, Celery 是分布式任务队列的重要原因就在于 worker 可以分布在多台主机中运行。修改配置文件后不需要重启 worker,它会自动生效。

任务结果存储backend:用来持久存储 Worker 执行任务的结果,Celery支持不同的方式存储任务的结果,包括AMQP,Redis,memcached,MongoDb,SQLAlchemy等。

Celery 的使用示例:

以 Python3.6.5 版本为例。

1. 安装 python 库:celery,redis。

pip install celery #安装celery pip install celery[librabbitmq,redis,auth,msgpack] #安装celery对应的依赖

celery其他的依赖包如下:

序列化:

celery[auth]:使用auth序列化。

celery[msgpack]:使用msgpack序列化。

celery[yaml]:使用yaml序列化。

并发:

celery[eventlet]:使用eventlet池。

celery[gevent]:使用gevent池。

celery[threads]:使用线程池。

传输和后端:

celery[librabbitmq]:使用librabbitmq的C库.

celery[redis]:使用Redis作为消息传输方式或结果后端。

celery[mongodb]:使用MongoDB作为消息传输方式(实验性),或是结果后端(已支持)。

celery[sqs]:使用AmazonSQS作为消息传输方式(实验性)。

celery[memcache]:使用memcache作为结果后端。

celery[cassandra]:使用ApacheCassandra作为结果后端。

celery[couchdb]:使用CouchDB作为消息传输方式(实验性)。

celery[couchbase]:使用CouchBase作为结果后端。

celery[beanstalk]:使用Beanstalk作为消息传输方式(实验性)。

celery[zookeeper]:使用Zookeeper作为消息传输方式。

celery[zeromq]:使用ZeroMQ作为消息传输方式(实验性)。

celery[sqlalchemy]:使用SQLAlchemy作为消息传输方式(实验性),或作为结果后端(已支持)。

celery[pyro]:使用Pyro4消息传输方式(实验性)。

celery[slmq]:使用SoftLayerMessageQueue传输(实验性)。

2. 安装 Redis,以 ubuntu 操作系统为例(如果使用 RabbitMQ,自己装一下就可以)。

通过源码安装:

$ wget http://download.redis.io/releases/redis-4.0.11.tar.gz$ tar xzf redis-4.0.11.tar.gz$ cd redis-4.0.11$ make

修改 redis 配置文件 redis.conf,修改bind = 127.0.0.0.1为bind = 0.0.0.0,意思是允许远程访问redis数据库。

启动 redis-server

$ cd src$ ./redis-server ../redis.conf

3. 第一个 celery 应用程序。

功能:模拟一个耗时操作,并打印 worker 所在机器的 IP 地址,中间人和结果存储都使用 redis 数据库。

#encoding=utf-8#filename my_first_celery.pyfrom celery import Celeryimport timeimport socketapp = Celery(''tasks'', broker='redis://127.0.0.1:6379/0',backend ='redis://127.0.0.1:6379/0' )def get_host_ip(): """ 查询本机ip地址 :return: ip """ try: s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.connect(('8.8.8.8', 80)) ip = s.getsockname()[0] finally: s.close() return ip@app.taskdef add(x, y): time.sleep(3) # 模拟耗时操作 s = x + y print("主机IP {}: x + y = {}".format(get_host_ip(),s)) return s

启动这个 worker:

celery -A my_first_celery worker -l info

这里,-A 表示我们的程序的模块名称,worker 表示启动一个执行单元,-l 是批 -level,表示打印的日志级别。可以使用 celery –help 命令来查看celery命令的帮助文档。执行命令后,worker界面展示信息如下:

aaron@ubuntu:~/project$ celery -A my_first_celery worker -l info   -------------- celery@ubuntu v4.2.1 (windowlicker)---- **** ----- --- * *** * -- Linux-4.10.0-37-generic-x86_64-with-Ubuntu-16.04-xenial 2018-08-27 22:46:00-- * - **** --- - ** ---------- [config]- ** ---------- .> app: tasks:0x7f1ce0747080- ** ---------- .> transport: redis://127.0.0.1:6379/0- ** ---------- .> results: redis://127.0.0.1:6379/0- *** --- * --- .> concurrency: 1 (prefork)-- ******* ---- .> task events: OFF (enable -E to monitor tasks in this worker)--- ***** -----  -------------- [queues] .> celery exchange=celery(direct) key=celery [tasks] . my_first_celery.add[2018-08-27 22:46:00,726: INFO/MainProcess] Connected to redis://127.0.0.1:6379/0[2018-08-27 22:46:00,780: INFO/MainProcess] mingle: searching for neighbors[2018-08-27 22:46:02,075: INFO/MainProcess] mingle: all alone[2018-08-27 22:46:02,125: INFO/MainProcess] celery@ubuntu ready.

已经相当清晰了。 如果你不想使用 celery 命令来启动 worker,可直接使用文件来驱动,修改 my_first_celery.py (增加入口函数main)

if __name__ == '__main__': app.start()

再执行

python my_first_celery.py worker

即可。

4. 调用任务

在 my_first_celery.py 的同级目录下编写如下脚本 start_task.py如下。

from my_first_celery import add #导入我们的任务函数addimport timeresult = add.delay(12,12) #异步调用,这一步不会阻塞,程序会立即往下运行while not result.ready():# 循环检查任务是否执行完毕 print(time.strftime("%H:%M:%S")) time.sleep(1)print(result.get()) #获取任务的返回结果print(result.successful()) #判断任务是否成功执行

执行

python start_task.py

结果如下所示:

22:50:5922:51:0022:51:0124True

发现等待了大约3秒钟后,任务返回了结果24,并且是成功完成,此时worker界面增加的信息如下:

[2018-08-27 22:50:58,840: INFO/MainProcess] Received task: my_first_celery.add[a0c4bb6b-17af-474c-9eab-407d593a7807] [2018-08-27 22:51:01,898: WARNING/ForkPoolWorker-1] 主机IP 192.168.195.128: x + y = 24[2018-08-27 22:51:01,915: INFO/ForkPoolWorker-1] Task my_first_celery.add[a0c4bb6b-17af-474c-9eab-407d593a7807] succeeded in 3.067237992000173s: 24

这里的信息非常详细,其中a0c4bb6b-17af-474c-9eab-407d593a7807是taskid,只要指定了 backend,根据这个 taskid 可以随时去 backend 去查找运行结果,使用方法如下:

>>> from my_first_celery import add>>> taskid= 'a0c4bb6b-17af-474c-9eab-407d593a7807'>>> add.AsyncResult(taskid).get()24>>>#或者>>> from celery.result import AsyncResult>>> AsyncResult(taskid).get()24

重要说明:如果想远程执行 worker 机器上的作业,请将 my_first_celery.py 和 start_tasks.py 复制到远程主机上(需要安装 celery),修改 my_first_celery.py 指向同一个中间人和结果存储,再执行 start_tasks.py 即可远程执行 worker 机器上的作业。my_first_celery.add函数的代码不是必须的,你也要以这样调用任务:

from my_first_celery import appapp.send_task("my_first_celery.add
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值