奇异方程组的特解用matlab,用列主元消去法分别解方程组Ax=b,用MATLAB程序实现(最有效版)...

这篇博客详细介绍了如何在MATLAB中使用列主元消去法来解决奇异方程组Ax=b的问题。通过提供两种不同级别的MATLAB代码示例,包括入门级别和熟练通用级别,作者解释了该方法的步骤,并展示了具体计算过程。这两种代码分别处理3x3矩阵,通用级别代码更适用于不同矩阵的解法。

数值分析里面经常会涉及到用MATLAB程序实现用列主元消去法分别解方程组Ax=b

具体的方法和代码以如下方程(3x3矩阵)为例进行说明:

用列主元消去法分别解方程组Ax=b,用MATLAB程序实现:

(1)

c4d6fa2cece30290b6bb8e11d0976dc9.png

1、 实现该方程的解的MATLAB代码可以分为两种,一种是入门级别的,只是简单地计算出这道题即可,第二种是一种通用的代码,可以实现很多3x3矩阵的方程解,写好以后只需要改不同矩阵里的元素即可算出相应的解,需要建立在对MATLAB比较熟悉的基础上,具体如下:

第一种代码实现—入门级:

A=[3.01,6.03,1.99,;1.27,4.16,-1.23,;0.987,-4.81,9.34]

A1=[3.01,6.03,1.99,1;1.27,4.16,-1.23,1;0.987,-4.81,9.34,1]

B1=A1(1,1:4)

C1=A1(2,1:4)

D1=A1(3,1:4)

E1=-1.27/3.01*B1+C1

F1=-0.987/3.01*B1+D1

p1=E1(1,2)

q1=F1(1,2)

if (abs(p1)>=abs(q1))

a1=p1

a2=q1

FF1=E1

EE1=F1

else

a1=q1

a2=p1

FF1=F1

EE1=E1

end

G1=-a2/a1*FF1+EE1

H1=[E11;FF1;G1]

J1=H1(1:3,1:3)

b1=H1(1:3,4)

x1=J1\b1

第二种代码实现如下—熟练通用级:

A=[3.01,6.03,1.99,;1.27,4.16,-1.23,;0.987,-4.81,9.34]

A1=[3.01,6.03,1.99,1;1.27,4.16,-1.23,1;0.987,-4.81,9.34,1]

B1=A1(1,1:4)

C1=A1(2,1:4)

D1=A1(3,1:4)

f1=A1(1,1)

f2=A1(2,1)

f3=A1(3,1)

if (abs(f1)>=abs(f2))

if(abs(f1)>=abs(f3))

f11=f1

E11=B1

f22=f2

E12=C1

f33=f3

E13=D1

else

f11=f3

E11=D1

f22=f1

E12=B1

f33=f2

E13=C1

end

end

if(abs(e2)>=a

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值