基于python的电影在线_利用python实现电影推荐

“协同过滤”是推荐系统中的常用技术,按照分析维度的不同可实现“基于用户”和“基于产品”的推荐。

以下是利用python实现电影推荐的具体方法,其中数据集源于《集体编程智慧》一书,后续的编程实现则完全是自己实现的(原书中的实现比较支离、难懂)。

这里我采用的是“基于产品”的推荐方法,因为一般情况下,产品的种类往往较少,而用户的数量往往非常多,“基于产品”的推荐程序可以很好的减小计算量。

其实基本的思想很简单:

首先读入数据,形成用户-电影矩阵,如图所示:矩阵中的数据为用户(横坐标)对特定电影(纵坐标)的评分。

其次根据用户-电影矩阵计算不同电影之间的相关系数(一般用person相关系数),形成电影-电影相关度矩阵。

其次根据电影-电影相关度矩阵,以及用户已有的评分,通过加权平均计算用户未评分电影的预估评分。例如用户对A电影评3分、B电影评4分、C电影未评分,而C电影与A电影、B电影的相关度分别为0.3和0.8,则C电影的预估评分为(0.3*3+0.8*4)/(0.3+0.8)。

最后对于每一位用户,提取其未评分的电影并按预估评分值倒序排列,提取前n位的电影作为推荐电影。

以下为程序源代码,大块的注释还是比较详细的,便于理解各个模块的作用。此外,程序用到了pandas和numpy库,实现起来会比较简洁,因为许多功能如计算相关系数、排序等功能在这些库中已有实现,直接拿来用即可。

import pandas as pd

import numpy as np

#read the data

data={'Lisa Rose': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5,

'Just My Luck': 3.0, 'Superman Returns': 3.5, 'You, Me and Dupree': 2.5},

'Gene Seymour': {'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5,

'Just My Luck': 1.5, 'The Night Listener': 3.0},

'Michael Phillips': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.0,

'Superman Returns': 3.5, 'The Night Listener': 4.0},

'Claudia Puig': {'Snakes on a Plane': 3.5, 'Just My Luck': 3.0,

'The Night Listener': 4.5, 'You, Me and Dupree': 2.5},

'Mick LaSalle': {'Just My Luck': 2.0, 'Lady in the Water': 3.0,'Superman Returns': 3.0, 'The Night Listener': 3.0, 'You, Me and Dupree': 2.0},

'Jack Matthews': {'Snakes on a Plane': 4.0, 'The Night Listener': 3.0, 'Superman Returns': 5.0, 'You, Me and Dupree': 3.5},

'Toby': {'Snakes on a Plane':4.5,'You, Me and Dupree':1.0,'Superman Returns':4.0}}

#clean&transform the data

data = pd.DataFrame(data)

#0 represents not been rated

data = data.fillna(0)

#each column represents a movie

mdata = data.T

#calculate the simularity of different movies, normalize the data into [0,1]

np.set_printoptions(3)

mcors = np.corrcoef(mdata, rowvar=0)

mcors = 0.5+mcors*0.5

mcors = pd.DataFrame(mcors, columns=mdata.columns, index=mdata.columns)

#calculate the score of every item of every user

#matrix:the user-movie matrix

#mcors:the movie-movie correlation matrix

#item:the movie id

#user:the user id

#score:score of movie for the specific user

def cal_score(matrix,mcors,item,user):

totscore = 0

totsims = 0

score = 0

if pd.isnull(matrix[item][user]) or matrix[item][user]==0:

for mitem in matrix.columns:

if matrix[mitem][user]==0:

continue

else:

totscore += matrix[mitem][user]*mcors[item][mitem]

totsims += mcors[item][mitem]

score = totscore/totsims

else:

score = matrix[item][user]

return score

#calculate the socre matrix

#matrix:the user-movie matrix

#mcors:the movie-movie correlation matrix

#score_matrix:score matrix of movie for different users

def cal_matscore(matrix,mcors):

score_matrix = np.zeros(matrix.shape)

score_matrix = pd.DataFrame(score_matrix, columns=matrix.columns, index=matrix.index)

for mitem in score_matrix.columns:

for muser in score_matrix.index:

score_matrix[mitem][muser] = cal_score(matrix,mcors,mitem,muser)

return score_matrix

#give recommendations: depending on the score matrix

#matrix:the user-movie matrix

#score_matrix:score matrix of movie for different users

#user:the user id

#n:the number of recommendations

def recommend(matrix,score_matrix,user,n):

user_ratings = matrix.ix[user]

not_rated_item = user_ratings[user_ratings==0]

recom_items = {}

#recom_items={'a':1,'b':7,'c':3}

for item in not_rated_item.index:

recom_items[item] = score_matrix[item][user]

recom_items = pd.Series(recom_items)

recom_items = recom_items.sort_values(ascending=False)

return recom_items[:n]

#main

score_matrix = cal_matscore(mdata,mcors)

for i in range(10):

user = input(str(i)+' please input the name of user:')

print recommend(mdata,score_matrix,user,2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值