用计算机计算最大公因数,利用计算器求两个较大数的最大公约数的简便方法

本文探讨了在信息技术时代如何利用计算器快速求解两个较大数的最大公约数,提出了一种简便方法。通过输入m÷n,转化为假分数,再进行一次除法操作,即可得出最大公约数,显著减少了辗转相除法的复杂步骤。同时,文章提供了实例验证了该方法的有效性,并给出了相关练习和作业,旨在帮助学生巩固理解和应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

!塑!垒三塑圭

ke.xuejiaoyujia 数学教育研究

利用计算器求两个较大数的最大公约数的简便方法

胡苏琦

(中山一中广东中山528400)

在高一数学必修A3课本中这一章介绍了如何求两

个较大的数的最大公约数的方法——辗转相除法,这种方法能

较快求出两个较大的数的最大公约数,但原理难理解,步骤复

杂。现在是信息技术的时代,有没有能够利用信息技术简便求

出两个较大的数的最大公约数?笔者发现是有的,且原理简单。

定理1:若詈=寺(其中p-,q互质)则m,n的最大公约数

为里或旦

P q

证明:·.·旦=卫

“ q

.‘.m2pk.n2qk

又p、q互质

k=旦是m、rt的最大公因数(即最大公约数)

P

同理可得k=三握m、n的最大公因数(即最大公约数)

q

用辗转相除法可以求出两个自然数的最大公因数

825l=6105x1+2146

6105=2146 X2+1813

2146=1813 Xl+333

18】3=333 X5+148

333:148×2+37

148=37 x4

则根据定理4。148与37的最大公约数就是8251与6105

的最大公约数,故8251与6105的最大公约数是37。这过程不

断交换除数被除数,容易混淆,过程也复杂。根据定理l利用计

算器我们能够更快求出两个较大的数的最大公约数。

第一步:输入m÷n,结果为x

第二步:按“shift”+“d/c”,就能将x转化假分数形式卫

q

第三步:输入m÷P=,这样通过计算器三步就能得到m、n

的最大公因数k

我们以上面求8251。6105的最大公约数为例

第一步:输入8251÷6105,结果为1.351515152

第二步:按“shift”+“d/c”,就能将1.351515152转化假分

’11

数形式筹

1QJ

第三步:输入8215÷223。得到m、n的最大公因数37。结果

与用辗转相除法相同,步骤却省了很多。

练习验证:

求下列两数最大公约数

(i)225,135②粥,196 劬2,168 ④153,119

并非求函数的定义域,教学时不需加大此部分难度.4作业布置

巩固练习:(教材%练习2).(个体练习为主,可让学生上4.1必做题:教材P7.习题2.2(A组)第7、8题.

迸台在黑板解题,强调格式)4.2选做题:教材%习题2.2(B组)第4题.

例2.(教材%例8)(讨论分析:比大小的依据?一师生共 4.3拓展题(选做):

练一小结:利用单调性比大小)4.3.1已知函数Y=f(2‘)的定义域为[一1,1],则函数Y

解: =f(1092x)的定义域为——

(1)解法1:用图形计算器或多媒体画出对数函数Y=l092x 4.3.2求函数Y=2+l092x(x≥1)的值域.

的图象.在图象上,横坐标为3.4的点在横坐标为8.5的点的4.3.3已知log.

r月三一⋯ . .4.3.4已知0l,ab>1.比较IogI÷,Iog.109b

所以,10923.4

解法2:由函数Y+l092x在R+上是单调增函数,且3.4<

8.5,所以I0923.4

3归纳小结。强化思想

本节课的目的要求是掌握对数函数的概念、图象和性质.在

理解对数函数的定义的基础上,掌握对数函数的图象和性质是

本节课的重点.

①提问学生本节课学会了什么知识;

②总结本节课主要学习内容:

·212·

÷的大,J、o

(设计意图)作业按循序渐进的原则布置,既巩固本节课所

学知识。又培养自觉学习的习惯,在解题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值