!塑!垒三塑圭
ke.xuejiaoyujia 数学教育研究
利用计算器求两个较大数的最大公约数的简便方法
胡苏琦
(中山一中广东中山528400)
在高一数学必修A3课本中这一章介绍了如何求两
个较大的数的最大公约数的方法——辗转相除法,这种方法能
较快求出两个较大的数的最大公约数,但原理难理解,步骤复
杂。现在是信息技术的时代,有没有能够利用信息技术简便求
出两个较大的数的最大公约数?笔者发现是有的,且原理简单。
定理1:若詈=寺(其中p-,q互质)则m,n的最大公约数
为里或旦
P q
证明:·.·旦=卫
“ q
.‘.m2pk.n2qk
又p、q互质
k=旦是m、rt的最大公因数(即最大公约数)
P
同理可得k=三握m、n的最大公因数(即最大公约数)
q
用辗转相除法可以求出两个自然数的最大公因数
825l=6105x1+2146
6105=2146 X2+1813
2146=1813 Xl+333
18】3=333 X5+148
333:148×2+37
148=37 x4
则根据定理4。148与37的最大公约数就是8251与6105
的最大公约数,故8251与6105的最大公约数是37。这过程不
断交换除数被除数,容易混淆,过程也复杂。根据定理l利用计
算器我们能够更快求出两个较大的数的最大公约数。
第一步:输入m÷n,结果为x
第二步:按“shift”+“d/c”,就能将x转化假分数形式卫
q
第三步:输入m÷P=,这样通过计算器三步就能得到m、n
的最大公因数k
我们以上面求8251。6105的最大公约数为例
第一步:输入8251÷6105,结果为1.351515152
第二步:按“shift”+“d/c”,就能将1.351515152转化假分
’11
数形式筹
1QJ
第三步:输入8215÷223。得到m、n的最大公因数37。结果
与用辗转相除法相同,步骤却省了很多。
练习验证:
‘
求下列两数最大公约数
(i)225,135②粥,196 劬2,168 ④153,119
并非求函数的定义域,教学时不需加大此部分难度.4作业布置
巩固练习:(教材%练习2).(个体练习为主,可让学生上4.1必做题:教材P7.习题2.2(A组)第7、8题.
迸台在黑板解题,强调格式)4.2选做题:教材%习题2.2(B组)第4题.
例2.(教材%例8)(讨论分析:比大小的依据?一师生共 4.3拓展题(选做):
练一小结:利用单调性比大小)4.3.1已知函数Y=f(2‘)的定义域为[一1,1],则函数Y
解: =f(1092x)的定义域为——
(1)解法1:用图形计算器或多媒体画出对数函数Y=l092x 4.3.2求函数Y=2+l092x(x≥1)的值域.
的图象.在图象上,横坐标为3.4的点在横坐标为8.5的点的4.3.3已知log.
r月三一⋯ . .4.3.4已知0l,ab>1.比较IogI÷,Iog.109b
所以,10923.4
解法2:由函数Y+l092x在R+上是单调增函数,且3.4<
8.5,所以I0923.4
3归纳小结。强化思想
本节课的目的要求是掌握对数函数的概念、图象和性质.在
理解对数函数的定义的基础上,掌握对数函数的图象和性质是
本节课的重点.
①提问学生本节课学会了什么知识;
②总结本节课主要学习内容:
·212·
÷的大,J、o
(设计意图)作业按循序渐进的原则布置,既巩固本节课所
学知识。又培养自觉学习的习惯,在解题