关于:3看一干
三看一干,总体上三看(横断面、病例对照和队列研究)的统计分析难度要高于一干(随机对照试验)。 因为三看的研究对象的选择、研究对象的分组比较,条件比较的宽泛,意思是受试对象的选择与分组条件不严,因此在统计分析时,需要在采用多因素分析(分层卡方、多因素方差分析、线性回归、Logisitc回归或者Cox回归等)进行统计分析。 而研究因素越多,采用的统计分析方法越难,这是公认的道理。不仅要考虑到因素有无作用,有时还要考虑多因素之间的交互作用。 随机对照试验就不一样了。受试对象的选择经过严格的纳入和排除标准,而且分组采用随机化分组,因此很好的控制了非试验因素的干扰,组间具有很好的可比性,因此往往采用单因素分析就可以实现我们的研究目的。 万一组间随机分组可比性没有达到(这点真实研究时完全可以出现),再采用多因素方法进行校正。随机分组可比时
1.随机对照分组为2组时: 1.1如果研究变量为数值变量,则优先考虑两独立样本t检验(条件:独立。正态、方差齐);条件不符:考虑非参数。 1.2如果研究变量为等级变量,则优先考虑非参数Wilcoxon秩和检验; 1.3如果研究变量为二分类,如(有效和无效),则优先考虑成组四格表卡方检验(条件:四十不惑、五谷丰登和缺一不可) 2.随机分组为K组时: 2.1 如果研究变量为数值变量,则优先考虑单因素设计方差分析(条件:独立。正态、方差齐);条件不符:考虑非参数Kruskall wallis H检验。 2.2如果研究变量为等级变量,则优先考虑非参数Kruskall wallis H检验。 2.3如果研究变量为二分类,如(有效和无效),则R×C卡方检验(条件:不可T<1,且1随机分组不可比
如果按照随机分组,但是非常不幸,组间一些非常重要的非试验因素再组间不平衡,也就是未达到可比性的状态。
(1)如果结局变量为数值变量:可以采用多因素线性回归;
(2)如果结局变量为等级变量:可以采用有序Logistic回归;
(3)如果结局变量为二分类变量:可以采用二项Logistic回归;
(4)如果结局变量为多分类变量:可以采用多项Logistic回归;
如果结局变量:二分类+时间
结局变量为二分类+时间,则考虑采用生存分析。生存分析常用的组间比较方法为“Kaplan merier”法;而多因素分析则采用的为Cox回归。松哥统计说
统计分析犹如人生:前面半生苦点(学习苦),后半生就舒服点(找个好点工作);前半生寻求安逸(怕学习,早享乐),后半生就劳累些(为生计奔波);
统计亦然,课题设计时,多辛苦点,采用随机对照试验,那么统计分析就会简单点;课题设计时马虎,则统计分析就辛苦点,采用多因素分析的方法进行校正。
多中心临床试验时,为了分析多中心之间是否存在中心效应,需要把中心作为一个因素加入研究。根据研究结局变量的类型,可以采用多因素方差、分层卡方以及相应的回归分析方法。
------------------------------
---统计思维与理论系列---
【1103.】CNKI升级了,即使撤稿也还能下载,如此留下痕迹,侥幸者要注意啦!
【1102.】[精品资源]回归建模策略(第二版)
【1101.】单组前后测量设计,你得小心了?
【1094.】横断面研究思路与统计分析方法
【1093.】临床设计与统计设计:相爱相杀
【1092.】为什么一篇文章要建立5个模型
【1091】混杂因素与交互作用杂谈!
【1090.】中英文期刊分类(SCI分区和中文核心),一文秒懂!
【1089.】看懂此图,统计开悟!松哥荐读
【1088.】模型发现有交互作用怎么办?怎么解释呢!
【1087.】LASSO:变量选择利器!
【1086.】为啥20分以上SCI论文如此钟情P-interaction!
【1085.】正态性不符合怎么办?其实没啥大事!
【1084.】哎呦妈呀!几何均数还有标准差呀?书中从来没说过呀!
【1083.】交叉验证是啥个意思,是换妻游戏吗?
【1082.】不懂统计思维的统计是没有灵魂的!
【1081.】造假大识别,这种假都敢造!
【1080.】辨析丨啥?统计上还有q值,和P值啥关系?
【1079.】这种造假方式,您能识别吗?
【1078.】SCI相关分析比中文正规的3点理由
【1077.】临床科研设计与数据分析9大易忽视错误(推荐)
【1076.】这种套路可以学,怎么化无意义为有意义!
【1075.】很有意思的一个统计问题,并发症到底该如何分析?
【1074.】一文了解主流统计软件
【1073.】WHAT!计算机随机序列竟然是伪随机
【1072.】单因素Logistic回归变量筛选,你还在用表表达,看看人家如何可视化的,审稿人看了能不开心吗?
【1071.】SCI论文中回归模型样本量确定标准,建议阅读
【1070.】性别和吸烟是专业公认的危险因素,为啥多因素分析性别没意义了?
【1069.】数值变量应该以何种形式进入模型
【1068.】多项分类变量进入模型的正确姿势
【1067.】这种随意拆分的错误不能犯
【1066.】SCI统计方法写作秘籍
【1065.】这篇SCI论文10个统计问题辨析
【1064.】以前认为概念无所谓,其实松哥错了
【1063.】松哥,我发现一处SCI统计错误,非常荒谬!
【1062.】分类变量哑变量设置后,参照到底如何选择?
【1061.】这篇SCI的诊断试验结果看不懂,他到底是咋比的
【1060.】如何向统计老师咨询统计问题的正确姿势
【1059.】生存分析单因素筛选的困惑
【1058.】4种最常用的统计设计解读
【1057.】SPSS统计软件学习终身不忘之必杀技
【1056.】回归家族的书剑恩仇录,高手进阶必经之路
【1055.】单因素是危险因素,多因素却保护因素了,想逆天吗?
【1054.】这种文章统计套路您一定要学,不管你什么专业通杀
【1053.】这个空白对照到底要不要加?
【1052.】同一肝癌患者,同时接受CT、超声和磁共振,如何分析?
【1051.】来自临床真实问题,有点意思,松哥荐读!
【1050.】知道两组数据的样本量均数标准差,怎么算合并统计量呢?
【1049.】meta分析软件Revman5.3卡死解决方案
【1048.】P>0.05,本身就是没意义还是样本量不够?
【1047.】两因素方差分析,如何判断哪个因素对结果影响较大?
【1046.】带基线数据数值变量如何进行统计分析辨析
【1045.】统计学习之最大困惑!!
【1044.】松哥为啥我318样本量统计分析出来确实400样本量?
【1043.】这两个是啥图?区别和联系
【1042.】变量之间到底是单项转化还是双向转化
【1041.】统计水平自我评估表
【1040.】基线分析的3个终极目的
【1039.】统计小白的学习路径
【1038.】SCI论文中Logistic回归模型“门当户对”原则,松哥心得推荐给您
【1037.】被我们忽视的生存分析区间删失数据
【1036.】Logistic回归文章的SCI审稿人意见解读
【1035.】统计学上的2K效应,你发现了没?
【1034.】正态分布的3个基因密码,聆听大自然心跳的代码!
【1033.】生存分析K-M法与COX回归结论不一致怎么办?
【1032.】异常值的处理只有删除?
【1031.】没有比较就没有伤害,让咱们互相伤害吧,教你4大类统计伤害方法
【1030.】SCI审稿人让我控制2个单因素无意义的变量?
【1029.】量表评价是信度重要还是效度重要?
【1028.】Meta分析要解决的首要任务
【1027.】文章材料与方法中统计方法如何描述
【1026.】这个到底是啥统计设计?一起来看看!
【1025.】聚类分析稳定性判别的经验总结
【1024.】“参数检验与非参数检验”哪个更好?
【1023.】干预前后数据统计分析方法
【1022.】听完四个小故事,你就明白主成分分析是啥意思了!
【1021.】方差分析P>0.05,两两比较LSD法P<0.05,这可咋整?
【1020.】等级与等比,可得分清楚!
【1019.】频率与概率,如胶又似漆!
【1018.】终于发现不用学习,顿悟统计的方法
【1017.】倾向性评分后数据,应该采用配对设计还是成组设计?
【1016.】统计必学的4个核心思想
【1015.】加权最小二乘回归是什么鬼?
【1014.】平行性检验到底应该啥时候做?
【1013】统计的4维空间(一维一层天)
【1012】到底做相关?还是方差分析呢?
【1011】这篇文章凭啥这样分组呢?
【1010】常用统计分析方法选择图解
【1009】P<0.05也别理直气壮,统计也会犯错,还分犯I类和II类错误?
【1008】文章鉴析:这篇文章或许有10处不适!
【1007】R×C卡方的Fisher确切概率法为什么会有卡方值
【1006】大小优指标如何同时制作ROC曲线[经验技巧]
【1005】统计方法与统计思想谁重要?
【1004】别说相关太简单,且听松哥说相关
【1003】正态分布10种鉴别方法汇总【荐藏】
【1002】连续变量变成等级变量后,原来有意义的变量变得没意义了?
【1001】SCI论文中的P for trend是什么鬼?为什么高分文章经常采用呢
------------------------------
精鼎原创,欢迎转发,未经允许,谢绝转载