四个角不是直角的四边形_判断题四个角都是直角四边形,不是长方形就是 – 手机爱问...

f4de332161767f1adbd63d674ba6ab56.png

2004-12-23

空间内,4个角都是直角的四边形是矩形吗?

空间内,4个角都是直角的四边形确实是矩形!

因为“4个角都是直角的空间四边形”不存在!证明如下(反证法)

证明:假设存在一空间四边形 ABCD ,∠A=∠B=∠C=∠D=90度。连结 BD,AC。 那么 BD,AC 必为异面直线。 设 AB=a,BC=b,CD=c,DA=d,AC=e,BD=f,

由勾股定理,有 a^2+d^2=b^2+c^2=f^2,a^2+b^2=c^2+d^2=e^2,

则 2×f^2=a^2+b^2+c^2+d^2=2×e^2 , 于是 e=f 。

设 BD 中点为 P ,连结 PA,PC,则 PA,PC 分别是直角三角形 △BAD、△BCD 斜边上的中线,那...全部

空间内,4个角都是直角的四边形确实是矩形!

因为“4个角都是直角的空间四边形”不存在!证明如下(反证法)

证明:假设存在一空间四边形 ABCD ,∠A=∠B=∠C=∠D=90度。连结 BD,AC。

那么 BD,AC 必为异面直线。 设 AB=a,BC=b,CD=c,DA=d,AC=e,BD=f,

由勾股定理,有 a^2+d^2=b^2+c^2=f^2,a^2+b^2=c^2+d^2=e^2,

则 2×f^2=a^2+b^2+c^2+d^2=2×e^2 , 于是 e=f 。

设 BD 中点为 P ,连结 PA,PC,则 PA,PC 分别是直角三角形 △BAD、△BCD 斜边上的中线,那么 PA+PC=f/2+f/2=f=e=AC,于是 A、P、C共线,即 BD,AC 交于 P,与题设“BD,AC 必为异面直线”矛盾。

所以,题设中的空间四边形并不存在(只存在平面四边形)。

因此,4个角都是直角的四边形只能是矩形。

如果楼主没有学过“异面直线”,也可以直接证明此题:证明 A、P、C 共线即可

(由三角形三边关系:若 两边之和等于第三边,则构不成三角形)。

收起

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值