linux 下  qserialport waitforreadyread_北师大版初中数学八年级(下)第一章第四节角平分线(精品)...

第一章 三角形的证明

1.4角平分线

一、知识点梳理

1.角平分线性质定理:

①角平分线平分已知角

②角平分线上的点到这个角两边的距离相等

2.角平分线判定定理:

在一个角的内部,到角的两边距离相等的点在这个角的平分线上

3.作图要求:掌握尺规作图做已知角的角平分线

二、经典题型总结

题型一:利用角平分线的性质证明线段相等

题型二:利用角平分线的性质求线段的长

题型三:利用角平分线的性质定理进行角平分线的判定

题型四:利用角平分线的性质解决实际问题

三、解题技巧点睛

1.当题目中出现“角平分线”时马上想到角平分线的两条性质,一定会用到

2.在角平分线的题目中如果出现平行线,则定会涉及到等腰三角形

3.三角形中两个底角平分线的交角与顶角的关系

三角形中两个底角外角平分线的交角与顶角的关系公式:

四、易错点分析

五、中考真题再现

(2019.甘肃.20题)如图,在△ABC中,点P是AC上一点,连接BP,求作一点M,使得点M到AB和AC两边的距离相等,并且到点B和点P的距离相等.(不写作法,保留作图痕迹)

9a1dbe47b46bd134bf77c2c67b5c3d74.png

(2019.宁夏.15题)如图,在Rt△ABC中,∠C=90°,以顶点B为圆心,适当长度为半径画弧,分别交AB,BC于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.若∠A=30°,则=   

a67ce4594c5cb1b5d8ce520f8a40bb57.png

六、习题巩固训练

1.如图,BE、CF是△ABC的角平分线,∠A=50°,BE、CF相交于D,则∠BDC的度数是   

0d0ed924e790faa3154aaecd1c3e1b53.png

2.已知如图,∠GBC,∠BAC的平分线相交于点F,BE⊥CF于H,若∠AFB=40°,∠BCF的度数为   

aa5bd087f7760974a3d8325bd8dd12cc.png

3.如图所示,若AB∥CD,AP、CP分别平分∠BAC和∠ACD,PE⊥AC于点E,PE=6,则AB与CD之间的距离为   

bc82ce46ca4a5724e595d17a34b07ca8.png

4.如图,已知P是∠AOB的角平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,点C是OB上的一个动点,若PC的最小值为3cm,则MD的长度为   

d3110b26873a071963314034548a807a.png

5.如图,BD是△ABC的外角∠ABP的角平分线,DA=DC,DE⊥BP于点E,若AB=5,BC=3,则BE的长为   

9596be9e73ec80996c930a69234734e5.png

6.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为60和35,则△EDF的面积为   

84c4ea982ca6f1125b7f0c304a5bbd54.png

7.如图,∠XOY=90°,OW平分∠XOY,PA⊥OX,PB⊥OY,PC⊥OW,其中A,B,C为垂足,若OA+OB+OC=1,则OC=   

5d9abaf9b2c0e1fb316a3d2b50b6e993.png

8.如图,三角形ABC中,BD平分∠ABC,AD垂直于BD,三角形BCD的面积为45,三角形ADC的面积为20,则三角形ABD的面积等于   

4b60f533dfebab8b12bfec22d105636c.png

9.如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,BC=8,AB=10,则△FCD的面积为__________.

76fa28972710e2a798d9a445d7529833.png

10.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,∠ABC的平分线交边AC于点D,延长BD至点E,且BD=2DE,连接AE.

(1)求线段CD的长;

(2)求△ADE的面积.

30f52467a4faab54134fef734f775aa8.png

11.如图,在△ABC中,∠ABC的平分线与∠ACB的外角的平分线相交于点P,连接AP.

(1)求证:PA平分∠BAC的外角∠CAM;

(2)过点C作CE⊥AP,E是垂足,并延长CE交BM于点D.求证:CE=ED.

2ef32423c34a91a13bceee2475f157dc.png

12.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,交CD于K,交BC于E,F是BE上一点,且BF=CE,

求证:FK∥AB.

cb18c6e016565ebcfb797f88bb668798.png

13.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,∠ABC的平分线交边AC于点D,延长BD至点E,且BD=2DE,连接AE.

(1)求线段CD的长;

(2)求△ADE的面积.

bb91c29ad3e727cff2becaa9320fe218.png

14.在Rt△ABC中,∠ACB=90°,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F,

①请你判断并写出FE与FD之间的数量关系.

②如果∠ACB不是直角,其他条件不变,①中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.

ec33fd019b6b04fe6f50bbd921a71404.png

15.已知:△ABC是三边都不相等的三角形,点O和点P是这个三角形内部两点.

(1)如图①,如果点P是这个三角形三个内角平分线的交点,那么∠BPC和∠BAC有怎样的数量关系?请说明理由;

(2)如图②,如果点O是这个三角形三边垂直平分线的交点,那么∠BOC和∠BAC有怎样的数量关系?请说明理由;

(3)如图③,如果点P(三角形三个内角平分线的交点),点O(三角形三边垂直平分线的交点)同时在不等边△ABC的内部,那么∠BPC和∠BOC有怎样的数量关系?请直接回答.

737d8ab66c80d44a45c7dadc2dd48780.png

16.已知∠MAN=120°,AC平分∠MAN.

(1)在图1中,若∠ABC=∠ADC=90°,求证:AB+AD=AC;

(2)在图2中,若∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.

d72ca9aa39fa673ade6a6d081be88251.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值