多目标优化算法_【实验室论文】基于多种群协同演化的约束多目标优化算法

本文介绍了两种基于多种群协同演化的约束多目标优化算法,CMOEA-PP和CCMODE。CMOEA-PP采用推进种群和常规种群保持平衡,而CCMODE维护多个子种群和存档种群,通过信息共享和协作寻找最优解。实验表明这两种算法在解决约束多目标优化问题上表现出优越性能。
摘要由CSDN通过智能技术生成

   欢迎关注智能优化与学习实验室

在很多实际问题中,例如科学、工程设计等领域,衡量一个方案的好坏难以用一个指标来判断,需要用多个目标来刻画,且实际问题通常带有约束条件,这类问题被称为约束多目标优化问题,高效求解约束多目标优化问题具有重要的科研价值和广阔的应用前景。平衡收敛性、多样性和合法性是解决约束多目标优化问题的核心挑战,下面介绍两个基于多种群协同演化的约束多目标优化算法框架。

为了保持收敛性、多样性和合法性之间的平衡,论文[1]提出了一种带有推进种群的约束多目标协同进化算法CMOEA-PP。CMOEA-PP算法拥有两个种群,分别是推进种群和常规种群,如图1所示。算法通过两个种群之间的合作保持收敛性、多样性和合法性之间的平衡。其中,推进种群注重收敛性,而常规种群则在注重合法性的同时承担了维持多样性的任务。为了能够穿过非法区域并且最终到达帕累托前沿(Pareto Front,PF)附近,推进种群在算法的早期不考虑约束条件,在算法的后期才考虑约束。同时,为了进一步加快种群的收敛速度,推进种群只搜索边缘解[2]和中心解。而常规种群由于承担了保持多样性的任务,它需要搜索完整的PF。因此,由于推进种群在算法早期不考虑约束条件,所以推进种群可以轻松地穿过非法区域。此外,推进种群还能通过信息共享机制指引和加快算法的进化进程。通过包含多组测试算例的对比实验证明了CMOEA-PP 算法解决约束多目标优化问题的效果优于目前最先进的算法[1]。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值