苏州大学计算机学院12级郑阳,非清晰区域抑制下的显著对象检测方法.pdf

本文介绍了一种改进的显著对象检测方法,针对CA模型存在的问题,通过引入图像清晰度的视觉反差特性,提出利用离散度检测模糊区域,并对存在差异的区域进行抑制。实验结果表明,这种方法有效解决了大目标检测和复杂背景误检问题,显著提高检测精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

29卷第3期 微电子学与计算机 V01.29No.3

March

2012年3月 MICROEI。ECTRoNICS&C()MPUTER2012

非清晰区域抑制下的显著对象检测方法

郑 阳,刘纯平,柳 恭,王朝晖

(苏州大学计算机科学与技术学院,江苏苏州215006)

存在检测内容缺失和误检的问题.在CA模型的基础上,引入图像清晰度的视觉反差特性,提出非清晰区域抑制下

的图像显著对象检测方法.该方法以离散度作为判断图像中是否存在清晰度差异的标准,并对存在差异的图像进

行抑制.实验结果表明,非清晰区域抑制的CA方法可以在较好的解决大目标检测和复杂背景误检问题,提高了显

著对象检测精度.

关键词:上下文感知;清晰度;显著性;显著对象检测

中图分类号:TP391 文献标识码:A 文章编号:1000一7180(2012)03--0084--05

DetectionBasedonInhibitionofBlur

Saliency Regions

ZHENG Zhacrhui

Yang,LIUChun-ping,LIUGong,WANG

of Scienceand

Computer 215006,China)

(Department Technology,SoochowUniversity,Suzhou

Abstract:Thereare ofcontent andfalsedetectionfor detection

problems missing Context-Aware(CA)Saliency

modelwhen with scale or

detecting onContext—Awaremodel。with

imagelarge objectcomplexbackground.Based

theintroductionofvisualcontrastcharacteristicof detectionmethodbasedoninhibitionof

imageclarity。asaliency

blur was wasmadeasthe tO

regions dispersion criterion whetherthereexist differencein

proposed.The judge clarity

an the wouldbeinhibitedifthereexistthedifference.The resultshowsthat.the

image,andimage experimental

detectionmethodbasedoninhibitionofblur canbettersolvethe ofcontent

saliency and

regions problem missing

falsedetec

内容概要:本文详细介绍了如何利用Simulink进行自动代码生成,在STM32平台上实现带57次谐波抑制功能的霍尔场定向控制(FOC)。首先,文章讲解了所需的软件环境准备,包括MATLAB/Simulink及其硬件支持包的安装。接着,阐述了构建永磁同步电机(PMSM)霍尔FOC控制模型的具体步骤,涵盖电机模型、坐标变换模块(如Clark和Park变换)、PI调节器、SVPWM模块以及用于抑制特定谐波的陷波器的设计。随后,描述了硬件目标配置、代码生成过程中的注意事项,以及生成后的C代码结构。此外,还讨论了霍尔传感器的位置估算、谐波补偿器的实现细节、ADC配置技巧、PWM死区时间和换相逻辑的优化。最后,分享了一些实用的工程集成经验,并推荐了几篇有助于深入了解相关技术和优化控制效果的研究论文。 适合人群:从事电机控制系统开发的技术人员,尤其是那些希望掌握基于Simulink的自动代码生成技术,以提高开发效率和控制精度的专业人士。 使用场景及目标:适用于需要精确控制永磁同步电机的应用场合,特别是在面对高次谐波干扰导致的电流波形失真问题时。通过采用文中提供的解决方案,可以显著改善系统的稳定性和性能,降低噪声水平,提升用户体验。 其他说明:文中不仅提供了详细的理论解释和技术指导,还包括了许多实践经验教训,如霍尔传感器处理、谐波抑制策略的选择、代码生成配置等方面的实际案例。这对于初学者来说是常宝贵的参考资料。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值