苏州大学计算机学院12级郑阳,非清晰区域抑制下的显著对象检测方法.pdf

本文介绍了一种改进的显著对象检测方法,针对CA模型存在的问题,通过引入图像清晰度的视觉反差特性,提出利用离散度检测模糊区域,并对存在差异的区域进行抑制。实验结果表明,这种方法有效解决了大目标检测和复杂背景误检问题,显著提高检测精度。
摘要由CSDN通过智能技术生成

29卷第3期 微电子学与计算机 V01.29No.3

March

2012年3月 MICROEI。ECTRoNICS&C()MPUTER2012

非清晰区域抑制下的显著对象检测方法

郑 阳,刘纯平,柳 恭,王朝晖

(苏州大学计算机科学与技术学院,江苏苏州215006)

存在检测内容缺失和误检的问题.在CA模型的基础上,引入图像清晰度的视觉反差特性,提出非清晰区域抑制下

的图像显著对象检测方法.该方法以离散度作为判断图像中是否存在清晰度差异的标准,并对存在差异的图像进

行抑制.实验结果表明,非清晰区域抑制的CA方法可以在较好的解决大目标检测和复杂背景误检问题,提高了显

著对象检测精度.

关键词:上下文感知;清晰度;显著性;显著对象检测

中图分类号:TP391 文献标识码:A 文章编号:1000一7180(2012)03--0084--05

DetectionBasedonInhibitionofBlur

Saliency Regions

ZHENG Zhacrhui

Yang,LIUChun-ping,LIUGong,WANG

of Scienceand

Computer 215006,China)

(Department Technology,SoochowUniversity,Suzhou

Abstract:Thereare ofcontent andfalsedetectionfor detection

problems missing Context-Aware(CA)Saliency

modelwhen with scale or

detecting onContext—Awaremodel。with

imagelarge objectcomplexbackground.Based

theintroductionofvisualcontrastcharacteristicof detectionmethodbasedoninhibitionof

imageclarity。asaliency

blur was wasmadeasthe tO

regions dispersion criterion whetherthereexist differencein

proposed.The judge clarity

an the wouldbeinhibitedifthereexistthedifference.The resultshowsthat.the

image,andimage experimental

detectionmethodbasedoninhibitionofblur canbettersolvethe ofcontent

saliency and

regions problem missing

falsedetec

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值