Python
Numerical Libraries & Data
Structures
- [numpy](http://www.numpy.org) - NumPy is the fundamental
package for scientific computing with Python.
- [scipy](https://www.scipy.org) - SciPy (pronounced “Sigh
Pie”) is a Python-based ecosystem of open-source software for
mathematics, science, and engineering.
- [pandas](http://pandas.pydata.org) - pandas is an open
source, BSD-licensed library providing high-performance,
easy-to-use data structures and data analysis tools for the Python
programming language.
- [quantdsl](https://github.com/johnbywater/quantdsl) - Domain
specific language for quantitative analytics in finance and
trading
-
[statistics](https://docs.python.org/3/library/statistics.html) -
Builtin Python library for all basic statistical calculations
### Financial Instruments
- [PyQL](https://github.com/enthought/pyql) - QuantLib's
Python port
- [pyfin](https://github.com/opendoor-labs/pyfin) - Basic
options pricing in Python
- [vollib](https://github.com/vollib/vollib) - vollib is a
python library for calculating option prices, implied volatility
and greeks.
- [QuantPy](https://github.com/jsmidt/QuantPy) - A framework
for quantitative finance In python
-
[Finance-Python](https://github.com/wegamekinglc/Finance-Python) -
Python tools for Finance
- [ffn](https://github.com/pmorissette/ffn) - A financial
function library for Python
- [pynance](http://pynance.net) - PyNance is open-source
software for retrieving, analysing and visualizing data from stock
and derivatives markets.
- [tia](https://github.com/bpsmith/tia) - Toolkit for
integration and analysis
### Trading & Backtesting
- [TA-Lib](http://ta-lib.org) - perform technical analysis of
financial market data
- [trade](https://github.com/rochars/trade) - trade is a
Python framework for the development of financial
applications.
- [zipline](http://www.zipline.io) - Pythonic algorithmic
trading library
- [QuantSoftware
Toolkit](http://wiki.quantsoftware.org/index.php?title=QuantSoftware_ToolKit)
- Python-based open source software framework designed to support
portfolio construction and management.
-
[quantitative](https://github.com/jeffrey-liang/quantitative) -
Quantitative finance, and backtesting library
- [analyzer](https://github.com/llazzaro/analyzer) - Python
framework for real-time financial and backtesting trading
strategies
- [bt](https://github.com/pmorissette/bt) - Flexible
Backtesting for Python
- [backtrader](https://github.com/mementum/backtrader) -
Python Backtesting library for trading strategies
- [pythalesians](https://github.com/thalesians/pythalesians) -
Python library to backtest trading strategies, plot charts,
seamlessly download market data, analyse market patterns etc.
- [pybacktest](https://github.com/ematvey/pybacktest) -
Vectorized backtesting framework in Python / pandas, designed to
make your backtesting easier.
- [pyalgotrade](https://github.com/gbeced/pyalgotrade) -
Python Algorithmic Trading Library
-
[tradingWithPython](https://pypi.python.org/pypi/tradingWithPython)
- A collection of functions and classes for Quantitative
trading
- [pandas_talib](https://github.com/femtotrader/pandas_talib)
- A Python Pandas implementation of technical analysis
indicators
- [algobroker](https://github.com/joequant/algobroker) - This
is an execution engine for algo trading
- [pysentosa](https://pypi.python.org/pypi/pysentosa) - Python
API for sentosa trading system
- [finmarketpy](https://github.com/cuemacro/finmarketpy) -
Python library for backtesting trading strategies and analyzing
financial markets