opencv 的norm_OpenCV之图像归一化(normalize)

本文介绍了OpenCV中的normalize函数,用于图像归一化,将矩阵值映射到特定区间。归一化的目的是便于处理。函数接受参数如输入数组、输出数组、归一化类型等。归一化类型包括NORM_MINMAX、NORM_L1、NORM_L2和NORM_INF,每种类型有不同的计算方法和用途。
摘要由CSDN通过智能技术生成

什么图像归一化

通俗地讲就是将矩阵的值通过某种方式变到某一个区间内

###图像归一化的作用

目前能理解的就是归一化到某个区间便于处理,希望高人可以指点

opencv文档中的介绍

C++: void normalize(InputArray src, InputOutputArray dst, double alpha=1, double beta=0, int norm_type=NORM_L2, int dtype=-1, InputArray mask=noArray() )

C++: void normalize(const SparseMat& src, SparseMat& dst, double alpha, int normType)

Python: cv2.normalize(src[, dst[, alpha[, beta[, norm_type[, dtype[, mask]]]]]]) → dst

Parameters:

src – input array.

dst – output array of the same size as src .

alpha – norm value to normalize to or the lower range boundary in case of the range normalization.

beta – upper range boundary in case of the range normalization; it is not used for the norm normalization.

normType – normalization type (see the details below).

dtype – when negative, the output array has the same type as src; otherwise, it has the same number of channels as src and the depth =CV_MAT_DEPTH(dtype).

mask – optional operation mask.

norm_type有NORM_INF, NORM_MINMAX,NORM_L1和NORM_L2四种。 1、在 NORM_MINMAX 模式下,alpha表示归一化后的最小值,beta表示归一化后的最大值。 2、在NORM_L1、NORM_L2、NORM_INF 模式下,alpha表示执行相应归一化后矩阵的范数值,beta不使用。 3、稀疏矩阵归一化仅支持非零像素

NORM_MINMAX

数组的数值被平移或缩放到一个指定的范围,线性归一化。

$dst(i, j) = \frac{(src(i, j) - min(src(x, y))) * (beta - alpha)}{max(src(x, y)) - min(src(x, y))} + alpha$ $${x}\over{y}$$

NORM_INF

分母为L∞范数 ,即矩阵各元素绝对值的最大值(切比雪夫距离)

NORM_L1

分母为L1-范数,即矩阵元素的绝对值之和(曼哈顿距离)

NORM_L2

分母为L2-范数,即矩阵各元素的欧几里德距离之和

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值