em算法python代码_EM算法Python实战

EM算法是一种迭代算法,主要适用于概率模型的参数估计,特别适用于含有隐变量的概率模型参数的极大似然估计,或者极大后验概率的估计。EM算法的每次迭代有两步组成:E步,求期望;M步,极大化。所以这一算法称之为期望极大化算法,简称EM算法。可能大家都听过EM算法,也知道有E步(求期望)和M步(极大化),但是求期望是求谁的期望,极大化又该如何极大化呢,单看理论有时不免一头雾水,通过实例可以让我们更好的理解,同时也先跟大家说一下EM算法是对初值敏感的。

首先,给大家先推荐一下理论学习的资料吧,毕竟内功还是要修修的。

1、李航统计学习方法-第九章 EM算法及其推广

2、视频教程:徐亦达|概率机器学习(头几个视频是介绍EM算法的)

3、 What is the expectation maximization algorithm?. Nature biotechnology, 26(8), 897.

网上关于EM的理论介绍还是非常多的,这里我们主要通过程序来让大家更好的理解EM算法,

我下面从二硬币模型开始转向三硬币模型帮助初学者更好的理解EM算法的过程。

示例一:二硬币模型

假设现在有两个硬币A和B,我们想要知道两枚硬币各自为正面的概率啊即模型的参数。我们先随机从A,B中选一枚硬币,然后扔10次并记录下相应的结果,H代表正面T代表反面。对以上的步骤重复进行5次。如果在记录的过程中我们记录下来每次是哪一枚硬币(即知道每次选的是A还是B),那可以直接根据结果进行估计(见下图a)。不含隐变量的参数求解问题

但是如果数据中没记录每次投掷的硬币是A还是B(隐变量),只观测到5次循环共50次投币的结果,这时就没法直接估计A和B的正面概率。这时就该轮到EM算法大显身手了,EM算法特别适用于这种含有隐变量的参数求解问题(见下图b)。含有隐变量的参数求解

先初始化输入参数,如上图1步给了一个初始值0.6(A硬币正面的概率),0.5(B硬币正面的概率)。接下来先进行E步(对隐变量求期望),如上图2步:以第一条数据为例,5H5T,为A的概率为

,为B的概率

,归一化后得P(A)=0.45,P(B)=0.55,剩下几条数据同理可得。而后通过M-step可计算重新迭代的概率值。如上图第一次迭代后

,循环上面的E、M步骤直至收敛我们就可以得到最终的答案,如上图进过10次迭代后得到了最终的结果。

示例二:三硬币模型

现在我们将上面的二硬币模型扩展为三硬币模型,其实原理基本差不多。假设有三枚硬币A、B、C,这些硬币正面出现的概率分别p,q和

。先抛C硬币,如果C硬币为正面则选择硬币A,反之选择硬币B,然后对选出的硬币进行一组实验,独立的抛十次。共做5次实验,每次实验独立的抛十次,结果如图中a所示,例如某次实验产生了H、T、T、T、H、H、T、H、T、H,H代表正面朝上。5次实验结果

本人最近也刚学EM算法,下面代码主要参考EM算法及其推广,这里面作者实现了一个两硬币模型的EM算法。本文对其稍做了一点修改,变成三硬币模型。

EM算法步骤:

E步:计算在当前迭代的模型参数下,观测数据y来自硬币B的概率:

M步:估算下一个迭代的新的模型估算值

对于这个三硬币模型来说,我们先通过E步(对隐变量求期望)来求得隐变量的参数(即属于哪个硬币),然后再通过M-step来重新估算三个硬币的参数,直至收敛(达到要求)为止。下面是实现三硬币模型的EM算法代码,希望可以更好的帮助理解。

# !usr/bin/env python

# -*- coding:utf-8 -*-

import numpy as np

from scipy import stats

def em_single(priors, observations):

"""EM算法单次迭代Arguments---------priors : [theta_A, theta_B,theta_C]observations : [m X n matrix]Returns--------new_priors: [new_theta_A, new_theta_B,new_theta_C]:param priors::param observations::return:"""

counts = {'A': {'H': 0, 'T': 0}, 'B': {'H': 0, 'T': 0}}

theta_A = priors[0]

theta_B = priors[1]

theta_c=priors[2]

# E step

weight_As=[]

for observation in observations:

len_observation = len(observation)

num_heads = observation.sum()

num_tails = len_observation - num_heads

contribution_A = theta_c*stats.binom.pmf(num_heads, len_observation, theta_A)

contribution_B = (1-theta_c)*stats.binom.pmf(num_heads, len_observation, theta_B) # 两个二项分布

weight_A = contribution_A / (contribution_A + contribution_B)

weight_B = contribution_B / (contribution_A + contribution_B)

# 更新在当前参数下A、B硬币产生的正反面次数

weight_As.append(weight_A)

counts['A']['H'] += weight_A * num_heads

counts['A']['T'] += weight_A * num_tails

counts['B']['H'] += weight_B * num_heads

counts['B']['T'] += weight_B * num_tails

# M step

new_theta_c = 1.0*sum(weight_As)/len(weight_As)

new_theta_A = counts['A']['H'] / (counts['A']['H'] + counts['A']['T'])

new_theta_B = counts['B']['H'] / (counts['B']['H'] + counts['B']['T'])

return [new_theta_A, new_theta_B,new_theta_c]

def em(observations, prior, tol=1e-6, iterations=10000):

"""EM算法:param observations: 观测数据:param prior: 模型初值:param tol: 迭代结束阈值:param iterations: 最大迭代次数:return: 局部最优的模型参数"""

import math

iteration = 0

while iteration < iterations:

new_prior = em_single(prior, observations)

delta_change = np.abs(prior[0] - new_prior[0])

if delta_change < tol:

break

else:

prior = new_prior

iteration += 1

return [new_prior, iteration]

# 硬币投掷结果观测序列:1表示正面,0表示反面。

observations = np.array([[1, 0, 0, 0, 1, 1, 0, 1, 0, 1],

[1, 1, 1, 1, 0, 1, 1, 1, 1, 1],

[1, 0, 1, 1, 1, 1, 1, 0, 1, 1],

[1, 0, 1, 0, 0, 0, 1, 1, 0, 0],

[0, 1, 1, 1, 0, 1, 1, 1, 0, 1]])

print em(observations, [0.5, 0.8, 0.6])

运行后结果为:

[[0.51392121603987106, 0.79337052912023864, 0.47726196801164544], 42]

从结果我们可以了解到经过42轮迭代,我们最终得出了结果:硬币A正面的概率为0.51392121603987106,硬币B为正面的概率为0.79337052912023864,C硬币正面概率为0.47726196801164544。

至此EM算法的实现就完成了,另外还有一个EM算法求高斯混合模型參数预计 的python实现,大家有兴趣的可以了解一下。

通过以上的例子希望能过帮助大家更好的理解EM算法。本人也初学EM算法,如果有错误的地方还恳请指正。

参考:

2、Do, C. B., & Batzoglou, S. (2008). What is the expectation maximization algorithm?. Nature biotechnology, 26(8), 897.

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是一个简单的 EM 算法的 Python 代码示例: ``` import numpy as np def gaussian(x, mu, sigma): return np.exp(-0.5 * ((x - mu) / sigma) ** 2) / (sigma * np.sqrt(2 * np.pi)) def em_algorithm(data, num_clusters, max_iterations): num_samples, dim = data.shape # Initialize means and covariance matrices randomly means = np.random.randn(num_clusters, dim) covariances = np.zeros((num_clusters, dim, dim)) for i in range(num_clusters): covariances[i] = np.diag(np.random.rand(dim)) # Initialize mixing coefficients uniformly mix_coefficients = np.ones(num_clusters) / num_clusters for iteration in range(max_iterations): # E-step: compute responsibilities responsibilities = np.zeros((num_samples, num_clusters)) for i in range(num_samples): for j in range(num_clusters): responsibilities[i, j] = mix_coefficients[j] * gaussian(data[i], means[j], covariances[j]).sum() responsibilities[i] /= responsibilities[i].sum() # M-step: update parameters for j in range(num_clusters): # Update mean means[j] = (responsibilities[:, j] * data.T).sum(axis=1) / responsibilities[:, j].sum() # Update covariance diff = data - means[j] covariances[j] = (responsibilities[:, j] * diff.T @ diff) / responsibilities[:, j].sum() # Update mixing coefficient mix_coefficients[j] = responsibilities[:, j].sum() / num_samples return means, covariances, mix_coefficients ``` 其中,`data` 是一个 $N\times D$ 的矩阵,表示 $N$ 个 $D$ 维数据点;`num_clusters` 是聚类数量;`max_iterations` 是最大迭代次数。函数返回每个簇的均值、协方差矩阵和混合系数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值