map中只有一个值 获取_小学数学,为什么一个三角形中最多只有一个直角或一个钝角...

小学阶段采用的是将任意一个三角形的三个内角,拼接在一起形成一条直线,根据这个事实得出任意三角形的内角和是180度的结论。到初中学了平行线的特性之后,就可以很严谨地证明这个结论。在小学只需要知道这个结论就行。

根据这个结论知道两个内角的度数,可求出第三个内角的度数。

fcd8e3d45b42ec08a8864c86806e19c4.png

虽然三角形只有三个内角,但任意一个三角形至少有两个内角是锐角。也就是说一个三角形中,最多只有一个直角,因为两个直角就是180度了,第三个角都没有了,所以不可能存在这种情况。或最多一个钝角,它比直角的度数还大,更不可能有两个钝角。

有两种三角形是比较特殊的。一种是等边三角形也称为正三角形。当我们看到正三角形,我们的第一反应是什么?三条边完全相等,而且三个内角每个都是60度。也就是相当于告诉了我们各个角的度数。

c5c74efabd62d2b78fcf51145e2cb0a5.png

等腰直角三角形,因为三角形的内角和是180度,而且我们知道一个角是直角,根据等边对等角,所以说另外两个角均为45度。

在做题过程中看到135度或45度,头脑中要闪过一个念头,如果添加一条辅助线,是否有可能转化成等腰直角三角形。

071696bd968106af76b6c611eae17a23.png

角3与角4互补

在三角形的角度问题当中,外角与它相邻的内角和等于180度。因此外角也就等于与它不相邻的两个内角的和。这个在解题过程中经常会用到。

在三角形中,内角度数有大小的区别,边长有长短之分。但并不是随便三条线段都能围成三角形的。在同一个三角形内,三条边的长度关系是有一定限制范围的。在一个三角形中任意两条边之和大于第三边,任意两边之差小于第三边。这个也是三条线段能否围成一个三角形的必要条件之一。

在同一个三角形内有等边对等角的规律。最特殊的情况就是三条边长一样长的情况,也就是大家熟悉的正三角形。

我们看一道简单的练习题。

已知一个三角形的一条边长为3厘米,另外一条边长为5厘米,问这个三角形的边长L在什么范围?

分析:因为是取值范围,所以说答案不是一个固定的数。

这个取值范围怎么算呢?这个就需要根据构成三角形的三条边的长度关系来计算。根据任意两边之和大于第三边,任意两边之差小于第三边。

5-3=2(厘米);5+3=8(厘米)。

也就是说这一条边长的范围是大于2厘米且小于8厘米。根据三角形的周长等于三条边长的和。

所以:10厘米

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值