matlab中stepwise,Stepwise Regression

该示例展示了如何从常数模型和全交互模型开始,使用stepwiselm函数比较大型和小型的逐步线性回归模型。通过加载carbig数据集创建表格,并构建基于马力和重量的里程模型,发现马力和重量的交互项对模型有显著影响。
摘要由CSDN通过智能技术生成

Compare large and small stepwise models

This example shows how to compare models that stepwiselm returns starting from a constant model and starting from a full interaction model.

Load the carbig data and create a table from some of the data.

load carbig

tbl = table(Acceleration,Displacement,Horsepower,Weight,MPG);

Create a mileage model stepwise starting from the constant model.

mdl1 = stepwiselm(tbl,'constant','ResponseVar','MPG')

1. Adding Weight, FStat = 888.8507, pValue = 2.9728e-103

2. Adding Horsepower, FStat = 3.8217, pValue = 0.00049608

3. Adding Horsepower:Weight, FStat = 64.8709, pValue = 9.93362e-15

mdl1 =

Linear regression model:

MPG ~ 1 + Horsepower*Weight

Estimated Coefficients:

Estimate SE tStat pValue

__________ __________ _______ ________

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值