背景:
为了满足各个平台间数据的传输,以及能确保历史性和实时性。先选用kafka作为不同平台数据传输的中转站,来满足我们对跨平台数据发送与接收的需要。
kafka简介:
Kafka is a distributed,partitioned,replicated commit logservice。它提供了类似于JMS的特性,但是在设计实现上完全不同,此外它并不是JMS规范的实现。kafka对消息保存时根据Topic进行归类,发送消息者成为Producer,消息接受者成为Consumer,此外kafka集群有多个kafka实例组成,每个实例(server)成为broker。无论是kafka集群,还是producer和consumer都依赖于zookeeper来保证系统可用性集群保存一些meta信息。
总之:kafka做为中转站有以下功能:
1.生产者(产生数据或者说是从外部接收数据)
2.消费着(将接收到的数据转花为自己所需用的格式)
环境:
1.python3.5.x
2.kafka1.4.3
3.pandas
准备开始:
1.kafka的安装
pip install kafka-python
2.检验kafka是否安装成功
3.pandas的安装
pip install pandas
4.kafka数据的传输
直接撸代码:
# -*- coding: utf-8 -*-
'''
@author: 真梦行路
@file: kafka.py
@time: 2018/9/3 10:20
'''
import sys
import json
import pandas as pd
import os
from kafka import KafkaProducer
from kafka import KafkaConsumer
from kafka.errors import KafkaError
KAFAKA_HOST = "xxx.xxx.x.xxx" #服务器端口地址
KAFAKA_PORT = 9092 #端口号
KAFAKA_TOPIC = "topic0" #topic
data=pd.read_csv(os.getcwd()+'\\data\\1.csv')
key_value=data.to_json()
class Kafka_producer():
'''
生产模块:根据不同的key,区分消息
'''
def __init__(self, kafkahost, kafkaport, kafkatopic, key):
self.kafkaHost = kafkahost
self.kafkaPort = kafkaport
self.kafkatopic = kafkatopic
self.key = key
self.producer = KafkaProducer(bootstrap_servers='{kafka_host}:{kafka_port}'.format(
kafka_host=self.kafkaHost,
kafka_port=self.kafkaPort)
)
def sendjsondata(self, params):
try:
parmas_message = params #注意dumps
producer = self.producer
producer.send(self.kafkatopic, key=self.key, value=parmas_message.encode('utf-8'))
producer.flush()
except KafkaError as e:
print(e)
class Kafka_consumer():
def __init__(self, kafkahost, kafkaport, kafkatopic, groupid,key):
self.kafkaHost = kafkahost
self.kafkaPort = kafkaport
self.kafkatopic = kafkatopic
self.groupid = groupid
self.key = key
self.consumer = KafkaConsumer(self.kafkatopic, group_id=self.groupid,
bootstrap_servers='{kafka_host}:{kafka_port}'.format(
kafka_host=self.kafkaHost,
kafka_port=self.kafkaPort)
)
def consume_data(self):
try:
for message in self.consumer:
yield message
except KeyboardInterrupt as e:
print(e)
def sortedDictValues(adict):
items = adict.items()
items=sorted(items,reverse=False)
return [value for key, value in items]
def main(xtype, group, key):
'''
测试consumer和producer
'''
if xtype == "p":
# 生产模块
producer = Kafka_producer(KAFAKA_HOST, KAFAKA_PORT, KAFAKA_TOPIC, key)
print("===========> producer:", producer)
params =key_value
producer.sendjsondata(params)
if xtype == 'c':
# 消费模块
consumer = Kafka_consumer(KAFAKA_HOST, KAFAKA_PORT, KAFAKA_TOPIC, group,key)
print("===========> consumer:", consumer)
message = consumer.consume_data()
for msg in message:
msg=msg.value.decode('utf-8')
python_data=json.loads(msg) ##这是一个字典
key_list=list(python_data)
test_data=pd.DataFrame()
for index in key_list:
print(index)
if index=='Month':
a1=python_data[index]
data1 = sortedDictValues(a1)
test_data[index]=data1
else:
a2 = python_data[index]
data2 = sortedDictValues(a2)
test_data[index] = data2
print(test_data)
# print('value---------------->', python_data)
# print('msg---------------->', msg)
# print('key---------------->', msg.kry)
# print('offset---------------->', msg.offset)
if __name__ == '__main__':
main(xtype='p',group='py_test',key=None)
main(xtype='c',group='py_test',key=None)
数据1.csv如下所示:
几点注意:
1、一定要有一个服务器的端口地址,不要用本机的ip或者乱写一个ip不然程序会报错。(我开始就是拿本机ip怼了半天,总是报错)
2、注意数据的传输格式以及编码问题(二进制传输),数据先转成json数据格式传输,然后将json格式转为需要格式。(不是json格式的注意dumps)
例中,dataframe->json->dataframe
3、例中dict转dataframe,也可以用简单方法直接转。
eg: type(data) ==>dict,data=pd.Dateframe(data)
以上这篇在python环境下运用kafka对数据进行实时传输的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
本文标题: 在python环境下运用kafka对数据进行实时传输的方法
本文地址: http://www.cppcns.com/jiaoben/python/248526.html