
为了进一步解释催化机理,缩短开发周期,理论化学家们开发了第一性原理计算方法及相关计算程序并广泛应用于各种催化反应研究体系中。那么作为未来的趋势,大数据驱动的机器学习+第一性原理计算高通量筛选催化剂的方法,是如何缩短实验开发周期,甚至是计算模拟的计算周期呢?
本次机器学习+DFT计算课程依旧由李昊博士给大家带来,剑指Nature。
关注小程序“科学10分钟”即可查看完整视频
如果你需要这份机器学习+DFT计算课程的PDF课件
公众号“科学10分钟”后台回复“机器学习”
快速开启机器学习+DFT计算课程进阶之路!
主讲人介绍:李昊,计算GO技术顾问,博士毕业于德克萨斯大学奥斯汀分校,博士后工作于丹麦科技大学物理系。主要研究领域为能源/环境催化剂设计、量子力学计算方法开发、人工智能应用。
本系列课程内容包括但不限于:
课程安排上课时间课程内容7月19号机器学习与计算入门
14:00-15:00
(限时免费)
如何通过机器学习加速第一性原理计算,从而促进催化反应研究时间待定,敬请期待催化机理
时间待定
(价值999元催化机理课程,只需要499元即可统统带走,转发朋友圈+2人团购价399元,转发朋友圈+3人团购价299元)
催化建模三大重要原理的详细解析(Scaling relationship、Brønsted–Evans–Polanyi relationship、Sabatier principle)d带中心理论的介绍(d-band center theory)火山图活性模型的推导方法气相催化模型液相催化模型(含最近较热门的复杂环境催化反应推导)电催化模型(含Computational Hydrogen Electrode方法介绍)如何通过火山图活性模型设计出高效的新型催化剂?含最新推出的Tunability theory的研究和分析,以及最新的三大合金理论(ensemble,strain,ligand effects)的拆解分析如何准确模拟、推导超大尺寸(大于3.9纳米/原子数超过300)的催化体系?含常见针对大尺寸建模误区集锦机器学习原理概述Behler-Parrinello 的atom-center network方法、TensorFlow、Keras、Pytorch等前沿机器学习后端的介绍如何利用机器学习拟合势能面
软件包的推广,并且加速密度泛函理论计算;
如何寻求局部/全局最优解
如何正确使用Cl-NEB过渡态搜索方法寻找正确的反应过渡态?含常见方法误区、计算文献中的过渡态计算常见错误集锦
往期课程回顾如下:
- 免费!电催化系列理论课程,肖建平研究员分享如何用理论计算合理设计催化剂
- 干货直播!分子模拟能解决哪些问题,在自己的研究领域如何应用?
- 审稿人视角|催化计算这么玩才能发顶刊
- 点击观看以上课程回放(课程在“小程序--视听学习”一栏下)
